Ross Conrad – Bee Culture https://www.beeculture.com Thu, 28 Dec 2023 16:44:59 +0000 en-US hourly 1 https://wordpress.org/?v=6.3.2 https://www.beeculture.com/wp-content/uploads/2022/07/BC-logo-150x150.jpg Ross Conrad – Bee Culture https://www.beeculture.com 32 32 For the Love of Bees https://www.beeculture.com/for-the-love-of-bees/ Mon, 01 Jan 2024 13:00:37 +0000 https://www.beeculture.com/?p=46568
Click Here if you listened. We’d love to know what you think. There is even a spot for feedback!

Read along below!

For the Love of Bees

Some of the ways backyard beekeepers benefit commercial operations and vice-versa
By: Ross Conrad

The beekeeping community is generally divided into two primary categories. There are commercial entrepreneurs and small-scale part-time backyard beekeeping enthusiasts. Commercial operators can be further broken down into full-time and part-time sideliners. It turns out that while all these groups all tend to have very different underlying motivations, they all share many similar types of knowledge and practices, and mutually support one another.

The Australian beekeepers studied rely heavily on meetings, events and conferences to keep up on the latest research. However, while knowledgeable speakers are valued, a lot of information exchanges take place between programs, out in the hallways where beekeepers share ideas and management practices.

The similarities among these different groups and how they interact with each other is the subject of a 2023 paper authored by Kirsten Martinus, associate professor of the School of Social Sciences at the University of Western Australia. The paper titled, ‘It’s a love interest’—Enthusiasts and regional industry cultures of practice, explores some of the similarities, differences and relationships between commercial and backyard beekeepers. While this study focused on a specific region of beekeepers in Western Australia, the information documented can be of benefit to beekeepers the world over due to the universality of the issues beekeepers face globally.

Dr. Martinus’ work suggests that commercial beekeepers and backyard honey bee enthusiasts both stand to benefit by cooperating and working together to share knowledge and information. As Dr. Martinus notes, “the findings point to the importance of informal non-firm actors in place-specific problem solving through a culture of exchange and mutual endeavor. This suggests that developing a regional industry culture of practice and entrepreneurship may support collaborations between hobbyists or enthusiasts and local business counterparts, which in turn will enhance regional competitiveness, identity and placemaking.” To put it simply, backyard beekeepers and commercial beekeepers can, and often do, support and benefit one another.

The Australian beekeepers studied shared a sense of local beekeeping tradition and long-time commitment, given that the majority use the Langstroth hive as opposed to alternative hive designs. For commercial operators, this was partly because other methods are not seen as commercially viable, due to the large capital investment in equipment required to change. It is also because some hive designs were not seen as authentic, as in the case of the Flow Hive.

Whether it’s a few hives in the backyard or thousands, beekeepers of all sizes love their bees.

Although much of the technology and management used in beekeeping is similar globally, this study acknowledges the importance of generalized regional variations depending on local weather, climate and whether colonies are located in urban, farmland or rural settings. ‘It’s a love interest’ notes that beekeeping “is an activity that requires both scientific and practical knowledge on bee behaviors, husbandry and hive care, as well as knowledge that is deeply embedded in ‘place’ such as weather, flowering times and places, and state and local laws around bee management and ownership.”

Commercial beekeepers are widely understood to be “regional assets” or “resources” that can help local beekeeping groups and shape new industry paths. Meanwhile backyard beekeepers have the luxury of being able to experiment and explore novel beekeeping techniques since their apicultural activities are decoupled from their livelihoods. The lines between commercial and backyard beekeepers often gets blurred however, such as when commercial operators retire and transition to part-time, when professionals mentor backyard beekeepers, and when commercial beekeepers receive fresh insights through informal exchanges with part-time enthusiasts.

A relatively low conversion rate from backyard to commercial beekeeper was observed. A backyard beekeeper’s commercial transition depends not only on “innovation but on willingness to upscale operations after acquiring skills and knowledge.” Some of the greatest barriers to commercializing a backyard operation are related to finances, liability and beekeeping competence. My own observation is that many commercial beekeepers get their start working for a commercial beekeeping operation. This allows them to get paid while they build the skill level they need to be successful on their own.

We beekeepers are free to practice an ever growing array of different types of beekeeping management with hives of various styles, different types of bees, and hard chemical, soft chemical or non-chemical treatment options just to name a few. We also adopt a wide variety of underlying motivations for engaging in beekeeping activities. Backyard beekeepers may enjoy the intellectual, educational and social aspects of beekeeping, while others may simply be looking to provide pollination for their gardens. Commercial beekeepers are primarily concerned with earning a living, managing colonies efficiently and reducing the physicality of their bee work. They were found to primarily work collaboratively on issues that address profitability and business viability.

The study found that the “novel and diverse local and technical know-how, personal experience, scientific and technical skills and occupational backgrounds, and social and work networks” that backyard beekeepers bring to their craft may offer commercial beekeepers an “external and complementary knowledge source”. The value of this contribution to the industry however, is not widely recognized. As one operator is quoted as saying, those in commercial beekeeping “think hobbyists don’t know anything, and hobbyists know they don’t want to do it on a big scale.”

The backyard beekeeping enthusiast plays an important role in improving community and social acceptance of beekeeping and helping to raise awareness of the importance of bee decline. They are more likely to get involved in honey bee related activities within their communities and this improves the industry’s profile overall by increasing social awareness of the industry and the plight of the bees. Their community engagement helps to strengthen society’s connection to beekeeping and the environment. This in turn can also help change local policies and laws that relate to beekeeping activities.

Dr. Martinus found that backyard beekeepers are generally less knowledgeable about bees and beekeeping than commercial operators, which may be why they are more willing to spend more time seeking and sharing knowledge. While backyard beekeepers tend to be quick to share know-how and experiences, commercial operators were found to generally be more protective of industry secrets and information.

Historically, a beekeepers commitment and profitability have been judged by asking questions like “How many hives do you run?” and “How long have you been keeping bees?” In the age of varroa and neonicotinoid pesticides, a new question is often used to quickly evaluate ones seriousness as a beekeeper: “What percentage of your colonies did you lose this Winter/year?”

Enthusiasts viewed the sharing of ideas and experiences as a way to enhance the beekeeping community. This process is facilitated through formal activities such as bee club and association meetings, classes and workshops and informally through mentorships. All this is in addition to more open access forms of accessing information through blogs, extension service and scientific websites, association or government newsletters and beekeeping journals and periodicals.

The primary focus of backyard beekeepers on basic beekeeping information makes sense given the steep learning curve necessary to get up to speed in bee culture. Less experienced beekeepers tend to be highly dependent on the knowledge of seasoned beekeepers and often adopt a “belief in the person”. The study notes that most enthusiasts felt “they received more information than they passed on, and that information was ‘unlocked’ through a gradual process of increased community status and credibility as they gained knowledge, experience and skill.” This process also impacts how a beekeeper is viewed within the wider beekeeping social network ‘because everyone knows everyone’.

All too often we beekeepers can be judgmental and seek to establish an ego driven pecking order and try to improve our status amongst our peers. A quick and dirty method many of the Australian beekeepers studied used to evaluate another’s commitment and profitability as a beekeeper is by assessing the number of years keeping bees (part-time) or the number of hives one manages (commercial). Of course, the use of such proxies to judge another’s seriousness as a beekeeper is fraught with error and can often be wildly mistaken, but they are commonly used nonetheless.

While keeping bees typically is an isolated activity, learning how to keep bees has a strong social component. This study documented the beekeeping community’s openness and willingness to share management techniques and has built into its ecosystem various opportunities for enthusiast-professional interactions at meetings, conferences and events, all of which serve to strengthen the overall beekeeping community. According to Dr. Martinus, “…hobbyists can be conceived as ‘apprentices’ engaged in legitimate peripheral participation where learning and mastery occurs through participation” in beekeeping. Furthermore, “…interactions between individuals produce a shared identity, related to both individual skill acquisition and an individuals’ existence within a certain context of and having competencies within the group.” Additionally, “…learning of practice then does not always occur in the same locality or in organized forms (e.g. work teams), but also informally through shared experience, passion or expertise and can occur across space and may include professionals, semi-professionals and hobbyists.”

The sharing of beekeeping information and techniques is facilitated by the fact that we are all working with the same insects and have a similar base of knowledge. There is a wide network of both formal and informal opportunities where individuals can connect with each other, allowing beekeepers to share and obtain meaning through the active process of learning by tackling similar problems and issues. Knowledge sharing between non-commercial and commercial groups allows for the exchange of perspectives which can be critical to figuring out what will work in one’s specific situation.

Dr. Martinus summarizes her work this way: “This research has found extensive direct and indirect interactions between hobbyists and operators, which have enhanced the value of hobbyist activities and have become channels for industry and community appropriation. As firm external knowledge sources, hobbyists did not fit current understandings of how user innovators might support industry. This finding perhaps reflects the low-tech character of beekeeping, which allows hobbyists to engage in non-profit markets alongside commercial ones. Hobbyists were both market competitors forcing operators into niche markets focused on tourist, mono-floral, high-value honey and collaborators involved in adapting global scientific or practical knowledge to the Western Australian context given the commercial focus on small process or technical/mechanical changes to improve productivity. Hobbyist activities were also of wider societal benefit, lifting community science levels, counteracting climate change, and changing industry’s operational context by changing policy and shifting societal images of bees and beekeeping.”

According to Dr. Martinus, the results of her study can be used to strengthen the beekeeping community in a couple ways: First is through “Better support for interactions between hobbyists and industry … for example funding or in-kind support to grow mentoring or internship schemes. These appear critical in the transfer of practice between the groups; it also provides a source of low cost labor for industry, and encourages responsible beekeeping amongst new hobbyist beekeepers as a means to address biosecurity threats.”

The second way her findings can strengthen the beekeeping industry is through “more appropriate policy in local governments – local laws on domestic keeping of animals particularly in urban areas, does often not adequately address beekeeping. This would recognize the importance of hobbyist beekeepers in the community (and bees in the environment). Related to this – the enactment of laws around urban beekeeping is often ad hoc, as local officials often do not understand bee behaviors and may be inclined to take an overly-cautious approach towards bees in urban areas in dispute resolution.”

Despite the huge diversity in practices and motivations among beekeepers, we all are dealing with many of the same issues from how to handle swarms, deal with foraging dearths, diseases, pests, queen issues, honey harvesting, timing of nectar flows, pesticide poisoning, etc. Ultimately, we are all in the same boat. By valuing and capitalizing on our differences rather than judging or denigrating them, we stand to create a stronger, more resilient beekeeping industry. A valuable lesson that is applicable not only to our industry, but many other areas of our lives as well.

]]>
Chemical-Free Yellow Jacket Removal https://www.beeculture.com/chemical-free-yellow-jacket-removal/ Wed, 01 Nov 2023 12:00:45 +0000 https://www.beeculture.com/?p=46166 https://www.beeculture.com/wp-content/uploads/2023/10/BC-Wasp-removal.mp3
Click Here if you listened. We’d love to know what you think. There is even a spot for feedback!

Read along below!

Chemical-Free Yellow Jacket Removal

A Valuable Service Beekeepers Are Uniquely Suited to Perform
By: Ross Conrad

Beekeepers have a tendency to be honey bee centric. Have a swarm hanging from a tree in your yard? We’ll be right over. But call a beekeeper to remove a yellow jacket nest and we’re typically not interested. This leaves the person calling for help in a conundrum: do they call a professional exterminator or save money and pick up a can of toxic pesticide bug spray at the hardware store and attempt to do the job themselves? I would suggest that when we pass up the opportunity to help a member of our community with a yellow jacket problem, we fail to show that we beekeepers are more than a one-trick pony and demonstrate the varied benefits beekeepers can bring to the community. We also forfeit the chance to help prevent the introduction of additional toxic pesticides into the environment, and we give up on a potentially profitable service that can help diversify our income.

As beekeepers, we are already conditioned and equipped to deal with stinging insects. While different in many ways, yellow jackets are surprisingly similar to honey bees. While yellow jackets are carnivorous and will eat insects both dead and alive, they also feed on fruit, nectar and honeydew. Their stingers are barbed like a honey bee’s, but the barbs are so small that they can typically sting repeatedly, and only occasionally does a stinger become lodged and pull free of the wasp’s body. Yellow jacket venom, like most bee and wasp venoms, is primarily dangerous only to those who are hyper-allergic. Thankfully, the protective clothing that protects you from bee stings will also protect you from yellow jackets.

Face of a southern yellow jacket queen (Vespula squamosa)

Yellow jackets are social wasps and participate in cooperative brood care. The yellow jacket queen is larger than the workers and is tasked with doing all the work to build and provision a nest on their own in Spring. Once the first litter of worker wasps reach maturity, they take over the nest building and food gathering duties. Like honey bees, male yellow jackets are haploid and females are diploid allowing female worker yellow jackets to lay eggs that develop into males.

While yellow jackets build nests of hexagon shaped combs similar to honey bees, they construct their nests by chewing naturally occurring wood fibers that when mixed with their saliva becomes a pulpy substance they are able to form into comb. A grey paper envelope surrounds the combs that make up their brood nest. Like honey bees, yellow jackets produce warning pheromones which suggest that smoke can aid in dealing with them.

There are several types of yellow jackets and they are all black with either white or yellow markings. The most common have yellow markings on their face, thorax and abdomens and they make their nests either in the ground or up in trees, under the eaves of roofs, or other above ground structures they deem suitable. The yellow jackets with white markings on their face, thorax and abdomens are often called bald-faced hornets. This is a misnomer since all yellow jackets (whether they have yellow or white markings) are technically wasps identified by the fact that they have narrow waists connecting their thorax to their abdomen.

Of all the stinging insects normally found in North America, the bald-faced hornet’s sting seems to hurt the most. This is perhaps because the bald-faced hornet is larger and therefore has a larger stinger and venom sack. The bald-faced hornet also has a unique defense in that it can squirt or spray venom from the stinger into the eyes of nest intruders causing immediate watering of the eyes and temporary blindness.

Yellow jackets tend to be more defensive than honey bees especially in late Summer/early Autumn when their food sources are becoming scarce and their nest size is at its maximum. Beekeepers often will see yellow jackets attempting to access honey bee hives at this time of year. While strong colonies are able to resist the advances of yellow jackets effectively, the size of the entrance of a hive can be reduced to help weaker colonies defend themselves. Since late Summer and early Autumn is the time of year when yellow jackets become more noticeable, it is when they are more likely to cause problems for people and elicit complaints from the public who then may look for a local beekeeper to deal with them.

When removing a yellow jacket nest, it is best to do the job at night. Most of the time, just like honey bees, yellow jackets will all have returned to their nest for the evening since they are unable to navigate safe flight activity without the aid of light. As a result, a yellow jacket nest that is disturbed at night will trigger the guard wasps to crawl out of the nest to defend the colony. Like ants, bees and yellow jackets will crawl all over the place, but they will not fly unless there is visible light to guide them. Also like honey bees, yellow jackets are unable to see the color red, so a red light will provide the wasp remover with a critical advantage permitting them enough light to see and work without allowing the yellow jackets enough light to take to the air.

Two-year yellow jacket nest, with a one-gallon (3.8 liter) container for size reference. Collected by Alabama, USA, 2007. Dimensions are approximately 18 inches by 24 inches by 12 inches (46 cm by 61 cm by 30 cm). Source: Wikipedia

For those with patience, a commercially available yellow jacket trap can be deployed. For those who prefer a faster method, an easy way to remove small, above ground nests is to place a bag around the nest and pull the nest away from its anchoring point on whatever structure it is attached to. For larger nests, a hive tool or for really big nests, a spatula can be used to sever the connection between the nest and the structure while holding the bag directly under it so the nest will fall to the bottom of the bag. Since the yellow jackets are restricted to crawling, you will have three to four seconds to quickly close the bag and seal the opening by tying it off if it is plastic, or folding it down if made of paper in order to seal the wasps inside. The bag containing the wasps should then be placed inside another container, such as a garbage can with a lid, since they can potentially chew through the bag during the night.

For ground nesting wasps, the easiest approach is to smother the colony. A large sheet of plywood can be placed on the ground over the entrance area at night when all the wasps are in the nest. For uneven ground, a sheet or blanket with the edges rolled up or folded a bit, can be placed down first to act like a gasket and seal gaps along the ground preventing any wasps from finding a way out from under the plywood. It is a good idea to weigh down the plywood with a rock or cement block to help ensure a good seal with the ground surrounding the colony’s entrance and to prevent a strong breeze from moving the plywood. The plywood should be left in place for at least a couple weeks to ensure all the wasps are dead before removal.

For the entrepreneurially inclined, there are pharmaceutical companies that will pay for wasps gathered in a manner that preserves the integrity of the wasp venom, so they can be used to manufacture allergy medications. One company, Jubilant HollisterStier, will pay $800-$1,000 per pound for yellow jackets, and up to $1,400 per pound for rarer wasps and hornets (and you thought that a three pound package of honey bees for between $125-$200 was expensive!). Rather than remove the yellow jackets at night, this work should take place during the day so that primarily female worker wasps are collected since the males do not have stingers. A bee vacuum that collects the wasps uninjured is the perfect tool for the job, since the wasps must be flash frozen alive in order to preserve the integrity of the venom for pharmaceutical use. Since the frozen insects can be stored for up to 24 months, collections obtained from numerous nests can provide a potentially lucrative sideline. Be sure to contact the company you choose to work with ahead of time since they have specific protocols and instructions for wasp collection, storage, documentation and shipping.

It is unfortunate that yellow jackets are widely considered a nuisance. Without them, we would be overrun with harmful insect pests since to feed their young, the wasps kill large numbers of caterpillars and other insects that harm cultivated and ornamental plants. By including wasp and hornet removal services to their skills, beekeepers can add to the industry’s social value and provide a valuable community service, while developing the potential for additional income streams all at the same time.

Ross Conrad is author of Natural Beekeeping and The Land of Milk and Honey: A history of beekeeping in Vermont. He will be speaking for the Western New York Honey Producers, Inc. in an event open to the public on November 18. Check out the calendar for details: https://www.beeculture.com/calendar-of-events/

]]>
A Doorway to Nature https://www.beeculture.com/a-doorway-to-nature/ Sun, 01 Oct 2023 12:00:05 +0000 https://www.beeculture.com/?p=45984 https://www.beeculture.com/wp-content/uploads/2023/10/spiritual-connection.mp3
Click Here if you listened. We’re trying to gauge interest so only one question is required; however, there is a spot for feedback!

Read along below!

Beekeeping

A Doorway to Nature
By: Ross Conrad

It has been suggested that a spiritual crisis is at the center of the long emergency we collectively face. This crisis manifests itself as a disconnect from the natural world and is considered by many to be one of the primary forces driving the growing degradation of environmental health. When we see ourselves as separate from the natural world, we view nature through the lens of how valuable it is to us personally, either economically or for its beauty. This is the typical Western approach to the notion of pristine wilderness. When we place such values on the natural world and its “resources” viewing it simply as a means to gain financial wealth or other material benefits, it can reinforce our separation from it.

Research indicates that people who have a strong emotional and spiritual connection to nature are more likely to behave positively towards the environment, wildlife and habitats. This suggests that nurturing a greater connection to the natural world among the general population may be critical in addressing our spiritual crisis and helping to reverse the current environmental emergency. There are many ways this nurturing of our connection can manifest including hiking and camping, fishing and hunting, farming and gardening, or bird watching.

For the readers of Bee Culture, beekeeping likely provides one of our primary windows into the natural world. Through beekeeping, we enter the fascinating world of the honey bee; from the waggle dance and the intricacies of swarm behavior, to honey bee biology and the production, use, and unique characteristics of the products of the hive. Our fascination with bees stems from our personal connection to them and our deep understanding of them and their ways. It has been claimed that the honey bee and beekeeping is the most studied and written about topic in the world, second only to us humans. The truth of course, is that all living creatures are absolutely fascinating: we just tend to be clueless to most of the wonder, beauty and amazing intricacies and relationships involved in the lives of the plants, animals and insects that surround us and that we may come into contact with. We simply don’t interact with them enough to understand them and their ways, as well as we do the honey bee, and this can result in their being under-appreciated.

The world of beekeeping acts as a doorway through which we are able to then connect with the wider natural world of all the pests, diseases, plants and weather patterns that impact our bees; for better or worse.

The truth is that we are not separate from nature and the earth. Our bodies are literally made of the same minerals of the earth; we live our lives on the earth surrounded by the natural world; and when we die our body goes back to the earth and eventually gets recycled by the natural world. What we do to the natural world, we do to ourselves. We may not die when a rare pollinator dies out and becomes extinct, but surely a small part of something within us dies, something sacred and precious.

A host of studies have pointed to the fact that the stronger our personal connection to the natural world, the greater our concern for the environment (Whitburn et al., 2019; Mackay and Smidtt, 2019). There is also strong evidence of a positive relationship between a person’s connection to the natural world and one’s personal health, wellbeing and happiness (Capaldi et al., 2014; Barragan-Jason et al., 2023). When individuals are exposed to natural environments, such as mountain tops, coastlines, meadows and forests, the exposure results in stress reduction and assists in mental recovery following intense cognitive activities. It has even been found that a hospital window view onto a garden-like scene can be influential in reducing patients’ postoperative recovery periods and analgesic requirements.

Beekeeping provides a doorway through which individuals can develop a strong spiritual connection to the natural world, especially those living in urban or suburban environments.

Embedded in diverse cultures around the world is the idea that people consciously and unconsciously seek connections with the natural world. The theory that this is a result of evolutionary history where humans have lived in intimate contact with nature was initially put forward by Harvard biologist and two-time Pulitzer prize-winner, E.O. Wilson, in the Biophilia hypothesis (Wilson, 1984). We humans appear to be innately attracted to other living organisms. Evidence suggests that this is particularly evident when life becomes difficult and stressful. How many of us can deny the relaxing effect of a quiet moment by a lake, the soothing effect of sitting by a river, the rejuvenation of a hike through a forest, a stress reducing stroll by the seaside, the calming effect of simply cuddling with a pet dog or cat, or spending time with the honey bee colonies in our apiaries. Simply put, we need contact with nature and the importance of our ability to connect with the natural world has only grown due to our increasingly urban, digital-screen and social media lifestyles that often serve to disconnect us from nature which in turn, may contribute to health and wellbeing problems.

One meta-analysis suggests positive short- and long-term health outcomes with improved self-esteem and mood with exposure to green environments. Proximity to water generated some of the greatest changes and the mentally ill experience the greatest self-esteem improvements (Barton and Pretty, 2010). Other researchers examining the link between finding meaning in life and our relationship to the natural world suggest numerous benefits that arise from a personal connection to the natural world. Not only does nature help us find meaning in life, it can enhance our appreciation for life, and how engaging in nature-based activities (such as beekeeping) “provides an avenue for many people to build meaningful lives” (Passmore and Krouse, 2023).

The idea that contact with nature benefits our mental and physical health appears to be strongly supported by the statistics. According to one researcher, “Animals have always played a prominent part in human life. Today, more people go to zoos each year than to all professional sporting events. A total of 56% of U.S. households own pets. Animals comprise more than 90% of the characters used in language acquisition and counting in children’s preschool books. Numerous studies establish that household animals are considered family members; we talk to them as if they were human, we carry their photographs, we share our bedrooms with them” (Frumkin, 2001).

Beekeepers have their own version of this in what is referred to as the “telling of the bees.” A tradition where it is believed that when the beekeeper dies, someone has to go tell the bees and perhaps hang a piece of black cloth on the hive to place it in mourning or else the colony would die out or abandon the hive. There appears to be many versions of this. Others tell the bees about important events in their lives particularly regarding a death in the family. Considering how easy it is for a beekeeper to put off caring for their bees with our busy lives, this tradition practically served as a way to keep the hives in the thoughts of those that survive a deceased beekeeper, so that they will hopefully prioritize finding a new custodian to take over responsibility for their care in a timely manner.

As a deep personal connection to the natural world, beekeeping has the potential to provide numerous benefits to its participants. Beekeeping encourages one to get exercise along with fresh air and sunshine, and there is significant evidence that suggests that even the occasional bee sting can help fortify the body’s immune system allowing it to more effectively deal with various ailments (provided of course that the person is not hyper allergic to honey bee venom). Beyond all this, we now know that beekeeping can also help establish a spiritual connection to the earth and all the life forms with which we share this planet; a connection that may be critical in our ability to effectively deal with our current reliance on damaging green-house gas emitting technologies that are slowly turning our lives and society upside down.

Many people are suggesting that the weather extremes we have been experiencing around the country and the world is the problem, when really the problem at its base level is the malevolent actions of individual people. Nurturing a greater connection to the natural world in greater numbers of people, such as through activities like beekeeping, might just hold part of the salvation for this world. Something to consider as you go about the business of caring for your bees this Autumn and are tucking your colonies in for the long Winter ahead.

Just the same as a month before,—
The house and the trees,
The barn’s brown gable, the vine by the door,—
Nothing changed but the hives of bees.

Before them, under the garden wall,
Forward and back,
Went drearily singing the chore-girl small,
Draping each hive with a shred of black.

Trembling, I listened: the Summer sun
Had the chill of snow;
For I knew she was telling the bees of one
Gone on the journey we all must go!

An excerpt from the poem Telling the Bees by John Greenleaf Whittier.
Read the full poem here: https://www.poetryfoundation.org/poems/45491/telling-the-bees

Ross Conrad is the author of Natural Beekeeping, Revised and Expanded 2nd Edition, and coauthor of The Land of Milk and Honey: A history of beekeeping in Vermont.

References:
Barragan-Jason, G., Loreau, M., de Mazancourt, C., Singer, M.C., Parmesan, C. (2023) Psychological and physical connections with nature improve both human well-being and nature conservation: A systematic review of meta-analyses, Biological Conservation, Volume 277:109842
Barton J, Pretty J. (2010) What is the best dose of nature and green exercise for improving mental health? A multi-study analysis. Environmental Science & Technology, 44(10):3947-55. doi: 10.1021/es903183r. PMID: 20337470.
Capaldi, C.A., Dopko, R.L., Zelenski, J.M. (2014) The relationship between nature connectedness and happiness: a meta-analysis, Frontiers in Psychology, Volume 5
Howard Frumkin, (2001) Beyond Toxicity: Human health and the natural environment, American Journal of Preventive Medicine, 20(3):234-240, ISSN 0749-3797, https://doi.org/10.1016/S0749-3797(00)00317-2
Mackay, C.M.L. and Schmitt, M.T. (2019) Do people who feel connected to nature do more to protect it? A meta-analysis, Journal of Environmental Psychology, 65:101323
Passmore, Holli-Anne and Krouse, Ashley, N. (2023) The Beyond-Human Natural World: Providing Meaning and Making Meaning, International Journal of Environmental Research and Public Health, 20(12):6170
Whitburn, J., Linklater, W., Abrahamse, W. (2019) Meta-Analysis of human connection to nature and proenvironmental behavior, Conservation Biology, https://doi.org/10.1111/cobi.13381
Wilson, E. O. (1984) Biophilia: the Human Bond with Other Species.: Harvard University Press, Cambridge, MA.

]]>
Pure Honey? https://www.beeculture.com/pure-honey/ Fri, 01 Sep 2023 12:00:43 +0000 https://www.beeculture.com/?p=45455 https://www.beeculture.com/wp-content/uploads/2023/09/PFAS-updated.mp3
Click Here if you listened. We’re trying to gauge interest so only one question is required; however, there is a spot for feedback!

Read along below!

Pure Honey?

Probably Not So Much
By: Ross Conrad

Most widely known as components of Teflon coated cookware and firefighting foams, PFAS are extremely persistent in the environment. Researchers don’t really have a very good handle on how long it takes for them to actually break down, if they ever do, which is why they are sometimes referred to as forever chemicals.

PFAS Everywhere
Due to their unique properties, these chemicals are used in an extremely wide range of commercial, industrial and consumer products, including adhesives, building and construction materials, cleaning products, paints, varnishes and inks, cosmetics and personal care, dry cleaning, flea and tick products, electronics, explosives and ammunitions, the oil and gas industries, and the medical industry, among others (Gaines, 2021). A huge number of PFAS chemicals have been produced and distributed through the global supply chain, with over 9,000 PFAS related chemicals recorded dating back to before 1950 according to the Environmental Protection Agency Master list of PFAS substances (EPA).

High Level of Toxicity
Peer reviewed studies have connected exposure to certain PFAS chemicals to a host of human health problems including reproductive effects such as decreased fertility or increased high blood pressure in pregnant women, developmental effects or delays in children, increased risk of some cancers, suppression of the body’s immune system and interference with the body’s natural hormones, along with increased cholesterol levels and/or risk of obesity (EPA, 2023). Some of these chemicals are so toxic that in 2022, EPA released a lifetime drinking water health advisory for four PFAS substances – not in the amounts of parts per million, or parts per billion, but in the fractions of parts per trillion range (U.S. Gov., 2022).

Health effects associated with exposure to PFAS are difficult to nail down for many reasons. Although there are thousands of PFAS with potentially varying effects and toxicity levels, most studies have focused on a limited number of better known PFAS compounds. Meanwhile, people can be exposed to PFAS in different ways and at different stages of their life, and the types and uses of PFAS change over time. All of this makes it challenging to track and assess how exposure to these chemicals occurs and how they will affect human health.

Honey Bee Exposure
In the June issue of Bee Culture, I note that PFAS used in plastic manufacturing (most notably in high density and low density polyethylene – HDPE & LDPE) has the potential to leach out of plastic hive components and impact bees and honey. Well, it turns out there is yet another avenue for PFAS to potentially make its way into our hives: pesticides (Lasee et al., 2022).

PFAS chemicals are being found in a wide variety of pesticides. Sometimes, the PFAS is the active ingredient or added as an adjuvant, or so called “inert” ingredient included in the pesticide formulation to enhance the effectiveness of the active ingredient. Other times, the levels of PFAS found in a particular pesticide is so small it is likely a result of the chemical leaching out of plastic packaging and into the pesticide or its components prior or during manufacture. Since pesticides are applied to our food crops, researchers are documenting PFAS chemical build up (bioaccumulation) in fish, animals and people.

Officials in the state of Maine found that more than 1,400 pesticides contain active ingredients that meet the state’s definition of PFAS (EWG, 2023). Researchers have also documented the migration of toxic pesticides from the surrounding environment into honey bee colonies.

The common presence of PFAS in pesticides, potentially including those many beekeepers place in their hives, is concerning not just from a human perspective but also from the bee’s. A small but growing body of research reveals the potential for adverse impacts of PFAS exposure in honey bee colonies. One researcher found that a honey bee’s oral exposure to PFOS resulted in a 72-hour oral median lethal dose (LD50) of 0.40 mg per bee (Wilkins, 2001). Meanwhile, a correlation between the bioaccumulation of fluorinated pesticides in honey bees, along with other types of pesticides, and mass mortality events of honey bee colonies has been documented (Martinello et al., 2019). Another study found that not only do PFAS have the potential to adversely impact honey bees, they can migrate into honey, the primary source of carbohydrate and energy for honey bees and one of the primary hive products produced by beekeepers (Sonter et al., 2021). Given the well-established fact that pesticides are commonly found in honey samples, it should come as no surprise if further testing uncovers widespread PFAS contamination in honey sold for human consumption.

States Taking the Lead
PFAS contamination presents a mostly unexamined problem for farmers all across the country. Prior to the recent revelation of PFAS contamination of pesticides, farmland has historically been contaminated with PFAS through the spreading of waste water treatment plant sewage sludge as an agricultural fertilizer. Another acknowledged source of contamination is the leaching of PFAS chemicals off military bases onto nearby farms and water supplies.

As part of the effort to get a handle on this situation, Maine has become the first state to enact a comprehensive ban on pesticides that include intentionally added PFAS, as well as pesticides contaminated with PFAS. The ban is currently set to take effect in 2030.

A second state to move to ban PFAS is Minnesota. Scientist’s understanding and ability to detect PFAS in the environment has evolved greatly since the Minnesota Pollution Control Agency (MPCA) and the Minnesota Department of Health (MDH) began investigating them back in 2002. Laboratories at that time had only identified two PFAS and extremely low concentrations were undetectable given the existing technology at that time. Today, we are able to measure extremely small amounts (parts per trillion) of several PFAS. As noted before, studies have linked long-term exposure to PFAS in this range to negative outcomes especially for the most vulnerable members of our population: children, the elderly, pregnant women and those with compromised immune systems.

The writing is on the wall when it comes to PFAS compounds. One of the world’s primary PFAS manufacturing companies, 3M, has agreed to pay more than $10 billion to settle lawsuits claiming it knowingly used “forever chemicals” in its products despite being aware of risks to human health. Additionally, 3M says it’s phasing out two common compounds – PFOS and PFOA – and has announced that they will discontinue all types of the chemicals by 2026. Unfortunately, history has shown that companies usually only phase out a toxic compound when they have a replacement ready for market. Typically, the replacement is just as harmful as the compound it replaces, but it takes decades to accumulate the data showing harm and require the replacement chemical to also be withdrawn. Of course by then, yet another toxic replacement is found.

Regularly rotating old comb out of hives is one way beekeepers can reduce toxic chemical loads on bee colonies. The color of the comb is not a reliable indication of the age of the comb, since combs that are only used by the bees or food storage take much longer than brood combs to darken.

Varroa Treatments
The commonly used beekeeping pesticide Amitraz (sold as Apivar) was not found to contain any fluorinated chemicals that would meet the state of Maine’s definition of PFAS. However, Fluvalinate, the active ingredient in Apistan does meet the state’s definition.

I spoke with pesticide toxicologist, Pam Bryer of the Maine Board of Pesticide Control who pointed out that the PFAS problem could easily have been avoided if all chemicals were treated like pesticides which are regularly tested for their persistence in the environment. According to Bryer, “for most of the PFAS out there, there is almost no data.” Bryer assured me that unlike PFOS and PFOA which are long chain fluorinated compounds, fluvalinate is not nearly as toxic since it contains a short chain fluorinated methyl group. She did express concern, however what can happen should the fluorinated methyl group in fluvalinate combine with other chemicals potentially forming more toxic compounds or potent green-house gases.

Better Safe Than Sorry
In my mind, the safest treatments available to beekeepers today are those that utilize organic acids. By definition, the acids are not toxic, though they are corrosive. All of the organic acids (formic, oxalic and hop beta) that are approved for use to control varroa mites become neutralized over time and leave behind no harmful residue from the acid. Unfortunately, we now know that PFAS have the potential to make their way into such otherwise relatively safe products and contaminate our colonies despite our best efforts.

Beekeepers don’t have to wait for regulatory action and should consider increasing their reliance on natural and organic approaches, or when possible, treatment-free management techniques to control mites. As beekeepers, we can reduce or even eliminate toxic chemical use in our hives starting today by incorporating organic practices into our hive management. One way is to regularly rotate old combs out of hives and allow colonies to build new comb so the level of residue buildup in wax remains relatively low. Another approach discussed in my book, Natural Beekeeping, includes the use of screened bottom boards, culling capped drone brood, forcing a brood break in the hive, and propagating strains of bees that show some resistance to mites and diseases. A trial that ran between 2016-2019 found that combining all five of these physical and biological treatment-free management approaches can control mite-related hive mortality and ensure survivability on par with commercially available pesticide treatments (Conrad, 2021).

Recently, researchers Robyn Underwood, Margarita López-Uribe and their team from Penn State and Virginia Tech published a study on organic beekeeping in which they “… found that the organic management system-which uses organic-approved chemicals for mite control-supports healthy and productive colonies, and can be incorporated as a sustainable approach for stationary honey-producing beekeeping operations.” (Underwood et al., 2023).

As Rachel Carson noted over 60 years ago: “The most alarming of all man’s assaults upon the environment is the contamination of air, earth, rivers and sea with dangerous and even lethal, materials. This pollution is for the most part irrecoverable; the chain of evil it initiates not only in the world that must support life, but in living tissues is, for the most part, irreversible.” (Carson, 1962). Given that we now have effective low toxic and non-toxic alternatives to dangerous chemicals, why continue to play Russian roulette with pesticides?

Ross Conrad is author of Natural Beekeeping, Revised and Expanded 2nd edition, and co-author of The Land of Milk and Honey: A history of beekeeping in Vermont.

References:
Carson, Rachel (1962) Silent Spring, The Riverside Press Cambridge, Houghton Mifflin Company, Boston pg 6
Conrad, Ross (2021) Comparison of a commercial Varroa mite honey bee treatment with treatment-free Varroa management techniques, Bee Culture September: pp 41-45
Environmental Protection Agency, Comptox Chemicals Dashboard: Master List of PFAS Substances (Version 2). Accessed June 26, 2023. https://comptox.epa.gov/dashboard/chemical_lists/pfasmaster
Environmental Protection Agency (2023) Our current understanding of the human health and environmental risks of PFAS, accessed June 21, 2023 https://www.epa.gov/pfas/our-current-understanding-human-health-and-environmental-risks-pfas
Environmental Working Group (EWG), Maine data unveils troubling trend: 55 PFAS-related chemicals in over 1400 pesticides, accessed June 13, 2023 – https://www.ewg.org/news-insights/news-release/2023/06/maine-data-unveils-troubling-trend-55-pfas-related-chemicals
Gaines, Linda G.T. (2001) Historical and current usage of per- and polyfluoralkyl substances (PFAS): A literature review, American Journal of Industrial Medicine, 66:353-378
Lasee, S. et. al. (2022) Targeted analysis and total oxidizable precursor assay of several insecticides for PFAS, Journal of Hazardous Materials Letters, 3:100067
Martinello, M. et. al. (2019) A survey from 2015 to 2019 to investigate the occurance of pesticide residues in dead honey bees and other matrices related to honey bee mortality incidents in Italy, Diversity, 12(1):15
McCarthy, C., Kappleman, W. & DiGuiseppi, W. (2017) Ecological Considerations of Per- and Polyfluoroalkyl Substances (PFAS). Curr Pollution Rep 3, 289–301
Steven Lasee, Kaylin McDermett, Naveen Kumar, Jennifer Guelfo, Paxton Payton, Zhao Yang, Todd A. Anderson, (2022) Targeted analysis and Total Oxidizable Precursor assay of several insecticides for PFAS, Journal of Hazardous Materials Letters, Vol. 3.
Sonter, C., Rader R., Stevenson, G., Stavert, J., Wilson, S.C. (2021) Biological and behavioural responses of European honey bee (Apis mellifera) colonies to perfluorooctane sulfonate (PFOS) exposure, Integrated Environmental Assessment and Management, 17(2)
United States Government (2022) Lifetime Drinking Water Health Advisories for Four Perfluoroalkyl Substances [FRL 9855-01-OW], Federal Register 87:118 pp 36848-36849
Underwood, R.M., Lawrence, B.L., Turley, N.E., Cambron-Kopco, L.D., Kietzman, P.M., Traver, B.E., López-Uribe, M.M. (2023) A longitudinal experiment demonstrates that honey bee colonies managed organically are as healthy and productive as those managed conventionally, Scientific Reports, 13:6072 https://doi.org/10.1038/s41598-023-32824-w
Wilkins, P. (2001) “Perfluorooctanesulfonate, potassium salt (PFOS): An acute contact toxicity study with the honey bee. Study number HT5601.”

]]>
A Path to Some Economic Freedom https://www.beeculture.com/a-path-to-some-economic-freedom/ Tue, 01 Aug 2023 12:00:34 +0000 https://www.beeculture.com/?p=45334 https://www.beeculture.com/wp-content/uploads/2023/08/economic-freedom.mp3
Click Here if you listened. We’re trying to gauge interest so only one question is required; however, there is a spot for feedback!

Read along below!

Beekeeping

A Path to Some Economic Freedom
By: Ross Conrad

The economic upheaval of the recent COVID years has revealed weaknesses in our economic system and many of the unsung benefits we beekeepers can enjoy from practicing our craft. We saw what’s been called the “Great Resignation” where workers left their jobs in droves. One of the primary reasons employees quit was due to the way employers treated them. For others, it was the company culture and values that did not align with their own. For those stuck in dead-end jobs, the COVID Economic Impact Payments provided the financial buffer they needed to transition into a new working situation. The dramatic decrease in unemployment made it challenging for employers to hire help, but made it much easier for workers to leave lousy jobs. The ruling and economic elite hate low unemployment because then workers have options and it makes it too easy for them to leave their jobs for a better one. This also puts upward pressure on wages which decreases profits. Far too many employers rely on the Federal Reserve’s efforts to manipulate interest rates and keep living expenses high enough so people’s savings will get used up and there will be plenty of desperate workers willing to accept jobs that they normally would not take. The Fed also works to keep unemployment high enough so most workers would not dare to leave their jobs, no matter how bad they are, because there are lots of financially hurting people waiting in the wings to take their place and there is so much competition for work that getting a better job is difficult.

Higher interest rates put the brakes on the housing market but apparently too many consumers still flush with cash saved up during the pandemic continue to spend. When discussing the Fed’s increases in interest rates on the November 2, 2022 airing of National Public Radio’s Morning Edition, the President of the Federal Reserve Bank of Kansas City, Esther George, stated, “We see that there is a bit of a savings buffer still sitting for households, that may allow them to continue to spend in a way that keeps demand strong,” she said. “That suggests we may have to keep at this for a while.”

NPR’s Morning Edition also interviewed Federal Reserve Chair Jerome Powell who stated: “No one knows whether there’s going to be a recession or not, and if so, how bad that recession would be… Our job is to restore price stability so that we can have a strong labor market that benefits all, over time.” Of course, Powell’s idea of a strong labor market is one where there are lots of people out of work so that employers have no problem finding workers for jobs that offer poor pay and few-to-no benefits. The “all” that benefit from the price stability of more people out of work due to higher interest rates is the business class, not the majority of the people who work for a living.

While most beekeepers are backyard part-timers with a few hives, a small percentage of beekeepers make a part-time, or full-time, business of beekeeping, and it is these beekeepers that account for the majority of managed honey bee colonies.

In honey bee economics, each individual bee’s efforts are primarily aimed at supporting the common good of the whole. No worker tries to monopolize hive resources and control or restrict access to the rest of the colony for their own personal gain. With a few notable exceptions, most of human culture that’s dedicated to the capitalist economic system works in the opposite way of a honey bee colony. Greed is promoted and rewarded. Monopolization, consolidation of power and control of the market is the goal, and employees are seen as an expense that should be minimized as much as possible, and are too often considered disposable. Unskilled laborers in particular are treated with little respect and dignity.

Of course no employee ever gets paid what they’re actually worth. The system is designed so that a company must purchase your labor wholesale so they can sell it retail. We have all been well indoctrinated into accepting this situation as the natural order of things but it took a long time to get us to this point. The first factories to open up and hired unskilled laborers at the dawn of the industrial age were greeted with strong opposition and protests from the populace. Rather than a person using a skilled craft to produce something useful that they could then sell or barter, individuals traded their time for money doing jobs that most anyone could do with a little training. Folks back then saw this for what it was, treating people with disrespect and compromising their independence and dignity.

People believed there was little difference between being a factory worker and a slave. Of course the factory worker’s situation is supposed to be voluntary and temporary since they can choose to quit at any time. Unlike a slave that the slave owner has to house, feed and clothe, the factory worker is expected to use their meager earnings to purchase their own accommodations and necessities and hope there is enough left over for a little discretionary spending.

To prevent employees from scrimping and saving so they can afford to eventually leave their jobs, companies took a page from indentured servitude farmers and establish company stores to provide their employees with goods, and built lodging to rent to workers, all at rates designed to ensure they could never afford to leave.

There are those who argue that working for others provides great benefits such as a reliable working situation, a greater sense of one’s basic needs being provided for which can instill a sense of personal security and stability, and not having to take the financial risks of running your own business. While this is all true, much of the same can also be said of slavery.

As far back as 44 BC, Cicero is quoted as saying “vulgar are the means of livelihood of all hired workmen whom we pay for mere manual labor, not for artistic skill; for in their case the very wage they receive is a pledge of their slavery.”

When Fredrick Douglass took a paying job, he is reported to have declared “Now I am my own master.” After life as a slave, receiving a wage that you can decide how to spend can feel like you have some level of freedom. Only later did he realize to the contrary, “experience demonstrates that there may be a slavery of wages only a little less galling and crushing in its effects than chattel slavery, and that this slavery of wages must go down with the other.”

Through a craft like beekeeping, one has the opportunity to escape wage slavery, choose their own hours and make their own decisions. Sure they take on all financial risks, but they also get to enjoy all the financial benefits. Beekeepers may not become millionaires from their efforts, but there is immense satisfaction that comes from being your own boss and living the agrarian lifestyle.

We have become well indoctrinated into maintaining capitalism and identifying with it as our means of survival for so long, that the idea of people working together, rather than competitively, to meet their collective needs like in the example of the bee hive, seems improbable if not impossible. What would we get in return for our selfless efforts to help maintain each other’s existence?

One well established economic model inspired by bees and the rest of the natural world comes in the form of the cooperative business. Work that is not based upon individual craft work can be organized by worker self-management. An example is Sioux Bee Honey, a beekeeper owned co-operative that notes on its website: “One bee can’t do it all, neither can one farmer. It’s why five humble beekeepers from Sioux City, Iowa, formed a co-op to share equipment and resources to bring more honey to market. It’s a way of doing business where family farms stay in the family and decisions are made democratically.”

Like all farming, beekeeping provides the foundation for a strong and resilient economy by creating new human centric wealth from the communal wealth of the natural world. Almost all other businesses and economic activities simply reorganize human centric wealth that already exists in order to extract more wealth, but farming in general and beekeeping specifically, combine sun, air, water and earth with the efforts of a bee colony to create new wealth (e.g. honey, beeswax, etc.) that did not previously exist. This is why agricultural revolutions must come before industrial or economic revolutions.

Beekeeping provides self-employment and all the social and economic benefits that go with it. The greatest advantage is throwing off the yoke of wage slave employment in our increasingly volatile economy and not being subject to the whims of “at will” employers. You also get to write-off legitimate beekeeping expenses on your tax return, reducing your tax bill so you get to keep more of your hard-earned money.

Beekeeping also appears to be somewhat technologically future-proof. The nature of beekeeping work suggests that despite current efforts to replace humans with robots and artificial intelligence in many areas of the economy, beekeeping is unlikely to ever become fully automated. There is a long list of technological promises like the paperless office that computers were supposed to create, less toxic pesticide use thanks to genetically engineered organisms, and electricity from nuclear power plants that is too cheap to meter, all of which never came to fruition. Sure there are sensors and gadgets we can use to monitor hives and provide real-time data on colonies, but a human being knowledgeable in honey bee management, biology, pests and pathogens, along with a working knowledge of meteorology and apiary goal considerations will still be needed to analyze the data and determine the best course of action to take, as well as carry out the necessary physical hive manipulations in the field.

When planned accordingly, beekeepers have a better chance of avoiding on-the-job burnout by freeing up some of their time, since unlike other farm and domesticated animals; bees do not need daily attention. Of course a beekeeper can keep so many colonies that they end up working seven-days-a-week, but a beekeeper can enhance their time flexibility by choosing to keep the number of colonies down to a manageable amount that can be worked within whatever number of days a week the beekeeper wants to work on a regular basis.

A little bit of economic freedom, allows you to make choices. We, who live in the highly developed countries of today, have choices unparalleled in the history of mankind. We can chase after money and be incredibly wealthy, get an amazing education, choose to be lazy, or try to make the world a better place. We have many choices but to exercise those choices it helps a lot to have some economic freedom. Beekeeping is one way to provide some of that freedom.

Ross Conrad is the author of Natural Beekeeping, Revised and Expanded 2nd edition, and The Land of Milk and Honey: A history of beekeeping in Vermont.

]]>
The Plastic Legacy https://www.beeculture.com/the-plastic-legacy/ Sat, 01 Jul 2023 12:00:28 +0000 https://www.beeculture.com/?p=44909 https://www.beeculture.com/wp-content/uploads/2023/06/BC-plastics-harm.mp3
Click Here if you listened. We’re trying to gauge interest so only one question is required; however, there is a spot for feedback!

Read along below!

The Plastic Legacy

Are the toxic chemicals in plastic affecting you and your bees?

By: Ross Conrad

Plastic has become ubiquitous in our lives and is clearly responsible for significant advances in fields as varied as medicine, sports, aeronautics, electronics, food packaging, textiles and construction. Agriculture has also come to rely heavily on plastic, and as beekeepers, we have come to depend on plastic for a multitude of beekeeping uses large and small. This includes every part of the hive in addition to queen excluders, smoker bellows, honey packaging, mating nuc boxes, feeders, support pins, hive wrapping and netting, propolis and small hive beetle traps, hive straps, bee helmets and brushes, extracting equipment and more.

Unfortunately, this incredibly useful stuff is also responsible for slowly and quietly inflicting widespread damage that seriously threatens human and environmental health, as well as the economy. This is well documented in a recent report by the Minderoo-Monaco Commission, and the harm includes illness and death resulting from every phase of plastic’s life cycle, and the damage is getting worse (Landrigan et al., 2023).

The report’s lead author, Dr. Phillip J. Landrigan is the director of the Global Public Health Program and Global Observatory on Planetary Health at Boston College. Landrigran, who has spent decades researching the health effects of environmental pollutants, also worked on the first studies that looked into the dangers of lead exposure in children.

During the past couple decades, plastic hive parts and beekeeping equipment have become common and yet we know little about the impacts to bees that the chemicals that leach out of plastic can have on honey bee health.

Production
As the Minderoo-Monaco Commission report outlines, plastic is made from carbon-based polymers that combine many small molecules bonded into a chain or network. Polymers can be natural or synthetic. Natural polymers include rubber, hemp and silk. While synthetic plastics can be manufactured from plant materials, most synthetic polymers are made from fossil fuels and they include polyethylene, polypropylene, polystyrene (Styrofoam), polyvinyl chloride (PVC), and a host of other materials of which over 400 million tons are produced annually and the amount is growing. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of the plastic industry.

Various chemicals are then incorporated into these carbon-based polymers to impart certain properties to the plastic being manufactured. Among the properties chemicals impart to plastic are color, flexibility, stability, water repellency, sterility, fire resistance and ultraviolet resistance. Unfortunately, many of these added chemicals are extremely toxic. They include cancer-causing compounds, neurotoxins that disrupt the cells that make up nervous systems, endocrine disruptors such as phthalates that play havoc with the body’s hormones, bisphenols, per- and poly-fluoroalkyl substances (aka PFAS or forever chemicals), as well as brominated and organophosphate flame-retardants. These highly toxic chemicals are integral components of plastic. During production, these chemicals, along with plastic particles, leak into the air, water and soil polluting the landscape and sickening those that get exposed. Many of these chemicals are responsible for the majority of plastics’ harm to human and environment health.

Use
Due to their wide proliferation throughout society, plastic is present in almost everything we use in our daily lives. Consumers are exposed to toxic chemicals as they leach out of plastic; enter the environment, and cause pollution as a result of their normal use. Sometimes exposure occurs from direct contact with the plastic item, and other times it occurs through contact with a substance such as water or food that has been in contact with the plastic. Accidental and unintended exposures also occur such as when an infant sucks on a plastic toy.

Disposal
We have known for a long time that plastic itself does not decompose, and now we learn that some of the toxic compounds used in plastic (such as the PFAS family of chemicals) also fail to biodegrade which means they do not go away (hence the ‘forever chemical’ moniker). As a result, plastics are clogging our landfills, choking our oceans, and fouling our beaches. Additionally, some plastic chemicals undergo chemical transformation and form breakdown products and metabolites, that can be highly toxic and contribute further to the harm plastics create.

Unfortunately, our current patterns of plastic production, use and disposal occur with little attention to sustainable design or safe materials and a near absence of recovery, reuse and recycling. Plastic recycling systems are so inefficient and ineffective that studies have found that less than 10 percent of the plastic humans produce and use actually gets recycled and reused while the other 90 percent gets incinerated, or ends up in a landfill or the environment. Despite rising consumer awareness, government regulation and corporate attention, we are creating more single use plastic waste than ever before. Between 2019 and 2021 the world produced an additional six million metric tons of single use plastic waste, mostly from fossil fuels. The more plastic waste we create the greater the harm to human health, widespread environmental damage, significant economic costs and deep societal injustices.

In-depth research of advanced recycling of plastic (also called chemical recycling, molecular recycling or chemical conversion) in the United States finds this new technology is a lot of hype and not much reality (Denney et al., 2022; Singla & Wardle, 2022). These so-called advanced recycling facilities are themselves generating hazardous waste and causing environmental injustices under the false promise of recycling. Even worse, since the plastic we do manage to produce from “advanced recycling” is much more expensive than virgin plastic, much of the recycling output will likely end up as fuel for incinerators creating even more pollution.

Key report findings
The report points out that while manufacture and use of essential plastics should continue, the reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, needs to be curbed and their use greatly reduced. We also need to eliminate the migration of plastic into the biosphere across its life-cycle by embracing environmentally sound waste management.

Among the Minderoo-Monaco Commission’s findings are:

  • Plastic causes disease, impairment and premature mortality at every stage of its life cycle, with the health repercussions disproportionately affecting vulnerable, low-income and minority communities, particularly children.
  • Toxic chemicals added to plastic and routinely detected in people are known to increase the risk of miscarriage, obesity, cardiovascular disease and cancers.
  • Plastic waste is ubiquitous and our oceans, on which people depend for oxygen, food and livelihoods, are “suffering beyond measure, with micro- and nano-plastics particles contaminating the water and the sea floor and entering the marine food chain.”

The Commission’s science-based recommendations include a global cap on plastic production instituted through a Global Plastics Treaty.

Plastic’s impact on our industry
So, what does the incorporation of plastic into beekeeping mean for our bees? Mostly, we don’t know. No one is looking closely to see how the myriad of plastic related chemicals impact honey bee health. No one appears to be researching the amount of toxins, like the PFAS forever chemicals, that may be leaching out of plastic and into honey from plastic containers, or leaching into beeswax from plastic foundation. What do the effects of these chemical have on honey bee larvae raised in plastic comb? How does the early exposure of queen bees to plastic (from being raised in plastic queen cups, to being shipped in plastic queen cages) impact their health and longevity?

We know from experience that bees do not like plastic. If a sheet of plastic foundation is not coated with enough beeswax, the bees will avoid the foundation, building their comb next to and parallel to the foundation rather than utilizing the hexagon-embossed plastic surface designed to encourage comb building. Are the bees trying to tell us something?

Thankfully, there are many alternatives to plastic available to us beekeepers. From leather smoker bellows, pure beeswax foundation, wooden hive components, glass jars and metal queen excluders, just about every beekeeping tool or hive part made of plastic has a non-plastic alternative available on the market. The only items I can think of that do not have plastic alternatives readily available are small hive beetle traps and large multi-gallon pails for honey. It’s not that these items could not be made from materials other than plastic (think wooden beetle traps or large metal tins for honey packaging like they used to use in the old days), it’s just that no one is currently making them and offering such alternatives for sale, at least not in the U.S.

It appears that long-standing concerns over pesticide chemical contamination of bees and bee hives has distracted beekeepers from plastic chemical contamination issues. I know I have not given the issue much thought in the past. The report from the Minderoo-Monaco Commission represents a wake-up call just as multinational fossil-fuel corporations that produce coal, oil and gas and also manufacture plastics are deliberately pivoting from fossil fuel production to making more plastic. As increased renewable energy production erodes fossil fuel use, the fossil fuel industry is looking to increased plastic manufacturing as one of the ways to help maintain a ready market for their global life-support system destroying products.

Ross Conrad is the Author of Natural Beekeeping: Organic approaches to modern apiculture, and co-author of The Land of Milk and Honey: A history of beekeeping in Vermont.

References:
Denney, V., Brosche, S., Strakova, J., Karlsson, T., Ochieng, G., Buonsante, V., Bell, L., Carlini, G., Beeler, B. (2022) An Introduction to plastics and toxic chemicals: How plastics harm human health and the environment and poison the circular economy, International Pollutants Elimination Network (IPEN)
Landrigan, Philip J., et. al. (2023) The Minderoo-Monaco Commission on Plastics and Human Health, Annals of Global Health, 89(1):23 DOI: 10.5334/aogh.4056
Singla, Veena and Tessa Wardle (2022) Recycling Lies: “Chemical Recycling” of Plastic is Just Greenwashing Incineration, Natural Resources Defense Council, https://www.nrdc.org/sites/default/files/chemical-recycling-greenwashing-incineration-ib.pdf

]]>
Beekeeping’s Future https://www.beeculture.com/beekeepings-future/ Thu, 01 Jun 2023 12:00:42 +0000 https://www.beeculture.com/?p=44694 https://www.beeculture.com/wp-content/uploads/2023/06/Beeks-resiliency.mp3
Click Here if you listened. We’re trying to gauge interest so only one question is required; however, there is a spot for feedback!

Read along below!

Beekeeping’s Future

Despite enormous environment challenges facing the honey bee and beekeepers, there are a number of reasons to believe that the beekeeping industry is better able to withstand the uncertain future than other agricultural industries.

By: Ross Conrad

Much has been written and said about the numerous pesticide, pest and pathogen issues beekeepers are wrestling with, as it should be. What has gotten somewhat less attention is the threat that impacts all beekeepers and honey bee colonies everywhere in the world because it threatens everyone, everywhere: the climate crisis. Across the globe, climate-induced temperature extremes, droughts and floods have in some cases had a positive impact on crops. Unfortunately, the general effect of climate destabilization has been an overall reduction of crop yields (IPCC, 2022). Reduced yields lead to increases in hunger, and the resulting malnutrition related diseases, poverty and dislocated populations of climate refugees worldwide.

Climate impacts are predicted to be most severely felt throughout South, Central and much of North America. As well as Africa, Australia and parts of Asia.

Bees sip rather than gulp
To date, beekeeping and honey production has proven itself to be more resilient to climate disruption than other agricultural crops. Of course apiaries can be devastated by floods that wash away hives, or wildfires that turn colonies to ash, but bees handle drought better than other agricultural pursuits. This is because they simply require less water than most crops and livestock.

For example, farmers in Zimbabwe have found that honey production is proving to be relatively stable even while crop production in general has decreased, or in some cases totally failed (Mambondiyani, 2023). This has led to an increase in beekeeping in parts of the African continent. A side benefit from the proliferation of beekeepers is that African apiaries are helping to conserve precious vegetation in arid regions, as villagers avoid cutting trees near apiaries out of fear of the bees.

Diverse forage
One of the reasons beekeeping is proving itself to be more resilient to our changing climate is because bees often forage on wild plants and are not totally dependent on agricultural crops. This is an important trait since feral and native vegetation are often more drought tolerant than cultivated crops. Wild and indigenous plants can make up for decreased foraging opportunities when agricultural crops suffer reduced nectar and pollen production from a lack of water. The wide foraging area that honey bee colonies utilize (over three miles in every direction) helps ensure that any plants within foraging range that do have access to water and are in bloom, will be discovered by the bees.

Modest land requirements
Compared to other agricultural endeavors, beekeeping activities require the least amount of land, so farmers are often able to add honey production to their farm plan without sacrificing space for other crops. Apiaries can also utilize infertile land, or areas otherwise not suitable for other forms of agriculture.

Since beekeeping doesn’t modify or permanently alter the area in which it is carried out, it is fairly easy for an apiculturist who doesn’t own property to find land owners that are happy to provide apiary accommodations on their property. This helps make beekeeping the most accessible of all agricultural efforts, especially in third world countries and among populations with modest incomes since land ownership is not a necessary requirement to keep bees.

The pollination dividend
Through the act of pollination, honey bees increase crop quality and yields, an attribute that often causes landowners to seek out beekeepers willing to place bees on their land. Instead of being accused of stealing from neighboring farms, beekeepers receive praise for the pollination services they provide. The pollination action of bees also helps ensure the presence of wild and native species of plants and trees, which indirectly benefits wildlife as well.

Climate destabilization is making things harder for farmers, especially in arid regions like Africa.

A model of sustainability
Beekeeping is not only proving to be somewhat more resilient in the face of climate destabilization, but it can be part of the climate solution. Depending on how it is carried out, the perennial nature of beekeeping provides the potential to have one of the smallest environmental footprints in all of agriculture (Mujica et al., 2016; Moreira et al., 2019; Pignagnoli et al., 2021). The bees do most of the work. The biggest energy demands of beekeeping are in traveling to and from apiaries or migratory pollination sites. Significant energy is also required for extracting, bottling and processing of honey and beeswax. By keeping beeyards close to the honey house or farm that need pollination services, using renewable energy sources for processing, and non-plastic packaging, many of the negative climate and environmental effects of apiculture can be reduced, if not eliminated.

Since every beekeeping operation is different it can be difficult to pinpoint the exact ecological footprint of beekeeping in general. Much depends of the variety of practices such as feeding regimens, treatment practices, honey yields and shipping and transportation distances used by the beekeeping operation. Migratory beekeeping operations for example have been shown to have greater disease problems and results in bees more likely to have compromised immune systems, all of which increases the need for treatments and expensive inputs (Brosi et al., 2017; Simone-Finstrom et al., 2016; Gordon et al., 2014; Jara et al., 2021). Generally speaking, the ecological footprint of backyard beekeepers is more than three times as small as your standard commercial beekeeping operation (Kendal et al., 2011).

Unlike most agricultural activities, the very nature of the beekeeping business model provides the potential to be more sustainable. Vegetable, grain and fruit farmers typically need to buy new seed, fertilizer and agrochemicals annually, while providing tilling, irrigation and weed control. Beekeeping is a perennial activity. Beekeepers can use the same hives season after season, and as long as they are able to keep their bees alive, the need to purchase expensive inputs on a yearly basis is minimized.

It is easy to focus on all the challenges and fall into a “Woe is me” attitude considering the constant flow of bad news facing our industry. While I am not saying that things are going to be easy, there are plenty of reasons to believe that the future of beekeeping is more secure than other agricultural industries, many of which are profitable only because they are being propped up by government subsidies and taxpayer dollars. Beekeeping has the potential to provide one of the most stable and sustainable agricultural business models during the uncertain climate future that threatens to destabilize much of agriculture as it is practiced today. While beekeepings’ ecological footprint is already better than most other forms of agriculture, we can improve the current carbon footprint of the industry by finding ways to reduce emissions by minimizing transportation and shipping distances of bees, increasing the adoption of stationary beekeeping practices and by localizing, or at least regionalizing our business models.

Many beekeepers initially get involved in this ancient craft out of a concern and desire to benefit the natural world, a world that is rapidly changing and not always for the better. Thankfully, beekeeping appears to be better situated than most of agriculture to weather the unstable and uncertain future that is envisioned. Despite the numerous very real and serious threats to honey bees, there is good reason to think that beekeeping, and therefore honey bees themselves, will continue for as long as the planet’s ecosystem can support it and us.

Ross Conrad is author of Natural Beekeeping: Revised and Expanded, 2nd edition, and The Land of Milk and Honey: A history of beekeeping in Vermont.

References:
Brosi, B.J., Deleplane, K.S., Boots, M., De Roode, J.C. (2017) Ecological and evolutionary approaches to managing honey bee disease, Nature Ecology & Evolution, (1)1250-1262
Gordon, R., Schott-Bresolin, N., East, I.J. (2014) Nomadic beekeeper movements create the potential for widespread disease in the honey bee industry, Australian Veterinary Journal, 92:283-290
IPCC Sixth Assessment Report: Food, Fiber and Other Ecosystem Products
Jara, L., Ruiz, C., Martin-Hernandez, R., Munoz, I., Higes, M., Serrano, J., De la Rua, P., (2021) The effect of migratory beekeeping on the infestation rate of parasites in honey bee (Apis mellifera) colonies and on their genetic variability, Microorganisms, 9(22)
Kendall, A., Yuan, J., Brodt, S.B., Kramer, K.J. (2011) Carbon Footprint of U.S. Honey Production and Packaging – Report to the National Honey Board, University of California, Davis, pp 1-23
Mambondiyani, Andrew (2023) Why farmers in Zimbabwe are shifting to bees, Yes!
Moreira, M.T., Cortes, A., Lijo, L., Noya, I., Pineiro, O., Lopez-Carracelas, L., Omil, B., Barral, M.T., Merino, A., Feijoo, G. (2019) Environmental Implications of honey production in the national parks of northwest Spain,
Mujica, M., Blanco, G., Santalla, E. (2016) Carbon footprint of honey produced in Argentina, Journal of Cleaner Production, 116(10): 50-60
Pignagnoli A, Pignedoli S, Carpana E, Costa C, Dal Prà A. (2021) Carbon Footprint of Honey in Different Beekeeping Systems. Sustainability. 13(19):11063. https://doi.org/10.3390/su131911063
Simone-Finstrom, M., Li-Byarlay, H., Huang, M.H., Strand, M.K., Rueppel, O., Tarpy, D.R. (2016) Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees, Scientific Reports, 6(1):32023

]]>
Tropilaelaps https://www.beeculture.com/tropilaelaps-2/ Mon, 01 May 2023 12:00:01 +0000 https://www.beeculture.com/?p=44450 https://www.beeculture.com/wp-content/uploads/2023/05/T-Mite-2.mp3
Click Here if you listened. We’re trying to gauge interest so only one question is required; however, there is a spot for feedback!

Read along below!

Tropilaelaps

Part 2

By: Ross Conrad

Last month, we looked at the Tropilaelaps mite and its potential impact on North American beekeeping. While Tropilaelaps has yet to appear on the shores of North America, it can be found in the middle of a spat between the American Beekeeping Federation (ABF) and the Canadian Honey Council (CHC) over package imports.

A Warning Issued
On February 1, 2023, the ABF released a statement issuing a call for American beekeepers to encourage their congressional delegations to support the opening up of the Canadian border to honey bee package importation from the United States (Winter & Miller, 2023). The ABF letter notes that “the threat of the T mite (Tropilaelaps) being found in a southern hemisphere package and introduced to Canada is a real threat to all North American beekeepers.” The letter goes on to say, “This would be devastating to the North American beekeeping industry and production agriculture.” Furthermore, “ABF believes a new expedited risk analysis is needed” for both U.S. packages and those from other countries currently approved to export bees to Canada, in order to properly assess the current risk of a possible Tropilaelaps infestation.

Tropilaelaps’ need to access uncapped brood in order to feed every two days or so is the primary reason why it has not spread around the world so rapidly and extensively as the Varroa mite.

So far, Tropilaelaps has spread among South Asian countries including India, China, Pakistan, Myanmar (Burma), Thailand, Sri Lanka, Philippines, Afghanistan, S. Korea, Vietnam and Papua New Guinea. New Guinea and Australia are about 150 km (93 miles) apart at their closest shores: roughly the distance between Cuba and the U.S. mainland. The Canadian Food Inspection Agency (CFIA) currently allows the importation of honey bee packages into Canada from Australia, New Zealand, Chile, Ukraine and Italy. Queen imports into Canada are allowed from the same five countries as well as from the United States, Denmark and Malta. Given the close proximity of Canada’s Australian source of bees to a known Tropilaelaps infested country (New Guinea), the ABF is sounding the alarm concerning the risk of the mite making its way to Canada and then to the U.S.

Canada Weighs In
On February 22, 2023, the Canadian Honey Council responded to the ABF with their own statement (Scarlett, 2023). In it, the CHC called it “unfortunate that the American Beekeeping Federation, the American Honey Producers Association and those Canadian operators having an interest in importing American packaged bees are attempting to capitalize on the fear of introducing Tropilaelaps mites.”

The CHC goes on to say, “last year, Canadian beekeepers from most areas in the country experienced devastating losses and the demand for stock increased dramatically. Calls to open the border to U.S. packages intensified… The Canadian Food Inspection Agency put out an open call for additional research to see if there were any changes to the risks that had been identified in a 2013 risk assessment of U.S. packages.” The risks identified in 2013 were: Amitraz resistant mites, small hive beetle, American foulbrood resistance to antibiotics and Africanized bees. “The CHC has indicated that if the science supports the decision to open the border, the border should open,” the statement emphasized.

The CHC went on to note that since U.S. beekeepers can import bees from just two countries, Canada and New Zealand, and “New Zealand is just as close or closer to where Tropilaelaps is found…” they suggest that the U.S. could also import bees with the potential to harbor the mite. The CHC statement concludes by stating, “a North American concern is justified but it is far more likely that the mite will arrive by ocean liners than it is by packaged bees. The U.S. has 162 ocean freighters arriving every day and many of those are from China and Japan, two countries much more likely to have unwanted ‘visitors’ aboard. That is why calls in the USA for sentinel hives at ports have increased… This is not a trade issue, and it is always looked at as an animal health risk issue.”

After declining dramatically during the COVID pandemic, Canadian package imports rebounded strongly in 2022.
Year # of Packages Year # of Packages
2008 11,070 2016 44,997
2009 11,360 2017 27,387
2010 10,611 2018 31,638
2011 42,466 2019 41,339
2012 33,913 2020 13,746
2013 65,066 2021 8,661
2014 52,774 2022 56,737
2015 55,786 2023 TBD

Reality or Hype?
There is a high demand right now among Canadian beekeepers for packaged bees to replace heavy losses. Meanwhile for the first time in decades, almond production is contracting due to low almond prices and water issues aggravated by prolonged drought, and U.S. beekeepers are looking to replace some of this lost income. Opening up the Canadian border to U.S. package imports could help replace lost almond pollination fees.

American beekeepers certainly do not need another stressor on their bees, should Tropilaelaps make its way to America. However, as I pointed out last month, the T mite’s impact is not likely to be as devastating to the beekeeping industry as Varroa was in its initial years. Unlike the situation when the Varroa mite first arrived in North America, today we have approved mite treatments available for Varroa that are reported to also work on Tropilaelaps. We also know more about the biology of the T mite and its critical vulnerability of having to have constant access to its primary food source (uncapped brood) or they starve to death. These facts make the dire warnings spelled out in the ABF letter appear exaggerated.

Real World Impact
So how likely is a mite infestation into Canada from packages or caged queens really? Since no combs of brood are shipped within packages or queen cages, the chance that T mites will infiltrate North America through a bee shipment is slim. As numerous researchers have all pointed out, any mites that make it into the package or cage when it is initially populated with bees, are likely to be dead within two to three days at the most (Woyke, 1984 & 1987; Koeniger & Muzaffar, 1988; Rinderer et al., 1994). This is primarily why Varroa, which also originated in Asia, has spread to the four corners of the earth while Tropilaelaps is still largely confined to its native range.

There are a couple theoretical possibilities where mites could survive importation in packages and queens. If there are package producers or queen breeders that are super efficient and ship orders out the same day that they are packaged or caged, it is possible that the receiving beekeeper will install their shipment into a hive the same day that it arrives via overnight airfreight. Thus, any mites that happen to be riding along in a package or cage would only be without food for a day or so and could survive the trip. To protect American beekeepers, a simple requirement that bee shipments must be held for a minimum of 48 hours before they are introduced into hives containing uncapped brood, would help ensure no Tropilaelaps mites that hitched a ride along with the bees are able to survive the journey. This would mostly affect queen imports since packages are usually installed into hives with foundation or empty frames of drawn comb, or perhaps combs containing some honey and/or pollen. It is rare that packages get installed into hives in which uncapped brood is already present.

The other possibility is that there are occasional reports in the literature of Tropilaelaps being observed sitting at the base of an adult honey bee’s wings. This is significant since the base of the wings is one of the few locations where the hard exoskeleton of the bee is soft enough for the Tropilaelaps mite to be able to pierce it with their mouth parts and feed on hemolymph (Khongphinitbunjong et al., 2012). Thus, it appears that sometimes a T mite figures out that it can feed on an adult bee.

While it is certainly a possibility that Canada will become a Tropilaelaps host country and spread the mite to America, the availability of approved Varroa mite treatments that are also reported to work on Tropilaelaps means that should such an infestation take place, is unlikely to cause a major catastrophe for American beekeepers.

The Scofflaw Factor
Unfortunately, we beekeepers are notorious scofflaws. This tendency exposed itself clearly after Varroa arrived and many beekeepers turned to off-label (illegal) uses of pesticides to control the mites. Since there are likely to be some beekeepers that cannot be trusted to honor a 48 hour delay before installing bees into hives that contain uncapped brood, Canadian bee breeders that supply the U.S. could also be required to wait 48 hours after packaging or caging bees before shipment. This way if one person in the supply chain “bends the rules” the other acts as a backup to ensure the mites are unlikely to survive. Of course, the extensive border between our two countries would almost guarantee that should Tropilaelaps make its way to Canada and spread throughout the country, at some point natural swarms will carry the mite across the border into the United States. However, unless a Canadian swarm usurps a U.S. colony and replaces the mother queen with their usurping queen (a highly unlikely situation), natural swarms are not expected to cause Tropilaelaps to spread across the border. The extended broodless period when a swarm emerges from a hive and when it begins raise new brood in a new location also prevents swarm castaways on an ocean liner from carrying the mite far.

There is always the possibility however that the mite could be smuggled in illegally. Some people claim that back in the 1980s, Argentina was getting bees from Asia, breeding queens, smuggling them into Florida under the radar and ended up bringing the Varroa mite to the U.S. Folks worry that something similar might happen should Australia end up getting the mite, and export the mite to Canada. Please note, all this is still theoretical. As far as anyone knows, while Varroa has recently arrived in Australia, Tropilaelaps has not yet made its way to the island continent.

You Catch More Bees with Honey Than You do With Vinegar
Rather than point fingers at our Canadian neighbors and make them out to be the “bad guy”, U.S. beekeepers would do better to focus on the positive impacts Canadians can expect should they open up their border to U.S. honey bee packages. The main one that comes to mind is an improved environmental footprint.

The American beekeeping industry is very fossil fuel intensive. Regularly transporting bees throughout the country on 18-wheeled, diesel powered trucks and shipping bees overnight by airfreight creates a lot of green-house gas emissions. Dramatically reducing the distance that packages must travel by air, will greatly help the beekeeping industry start to address the festering issue of heavy fossil-fuel reliance that has mostly been ignored to date. This means doing exactly what the ABF recommends, localizing and regionalizing industry so we no longer are relying on extensively long supply chains. The global COVID pandemic exposed the serious drawback of relying on products and supplies that have to be shipped from overseas and the global climate crisis is exposing another. Relocalizing as much of society as possible will be required if we are to successfully reduce energy use and GHG emissions, prevent global ecological collapse, save our bees and maintain organized human existence. An additional benefit is that reduced shipping distances should result in lower overall costs, allowing U.S. bee producers to compete competitively with bees from down under while allowing Canadian beekeepers to enjoy lower prices.

I get the ABF’s concerns. Declining almond prices and a lack of available water from increasing droughts out west is causing many almond producers to pull their older trees from production. For the first time in well over a decade, almond growers will be requiring fewer hives for pollination, not more. For those beekeepers that fell into the economic trap of relying on almond pollination fees for a large percentage of their annual income, the severe economic hit they are going to receive will be challenging. The greater the share of their annual income from almond pollination, the more difficult it will be for the beekeeper to stay afloat. Opening up a new market in Canada for U.S. packaged bees, while certainly not enough to entirely replace the lost almond pollination income, will help take some of the sting out of the loss. Efforts to use the fear of Tropilaelaps to facilitate such a trade agreement is a weak approach.

Ross Conrad is the author or Natural Beekeeping: Organic approaches to modern apiculture and the Land of Milk and Honey: A history of beekeeping in Vermont. Ross will be teaching a beginner organic beekeeping class the weekend of May 20-21 and an intermediate class June 4th in Vermont. For more information visit: www.dancingbeegardens.com

References:
Khongphinitbunjong, K., de Guzman, L.I., Burgett, M.D., Rinderer, T.E., Chantawannakul, P. (2012) Behavioral responses underpinning resistance and susceptibility of honey bees to Tropilaelaps mercedesae. Apidologie 43: 590–599 https://doi.org/10.1007/s13592-012-0129-x
Koeniger, N., and Muzaffar, N. J. J. O. A. R. (1988) Lifespan of the parasitic honeybee mite, Tropilaelaps clareae, on Apis cerana, dorsata and mellifera. Journal of Apicultural Research 27(4): 207-212.
Rinderer, T.E., Oldroyd, B.P., Lekprayoon, C., Wongsiri, S., Boonthai, C.,Thapa, R. (1994) Extended survival of the parasitic honey bee mite Tropilaelaps clareae on adult workers of Apis mellifera and Apis dorsata, Journal of Apicultural Research, 33(3):171-174, DOI:10.1080/00218839.1994.11100866
Scarlett, Rod (2023) Canadian Honey Council letter, https://honeycouncil.ca/
Winter, Dan & Jay Miller, (2023) American Beekeeping Federation letter, https://www.beeculture.com/abf-statement/
Woyke, J. (1984) Survival and prophylactic control of Tropilaelaps clareae infesting Apis mellifera colonies in Afghanistan, Apidologie, 15(4):421-434
Woyke, J. (1987) Length of Stay of the Parasitic Mite Tropilaelaps Clareae Outside Sealed Honey Bee Brood Cells as a Basis for its Effective Control, Journal of Apicultural Research, 26(2):104-109, DOI:10.1080/00218839.1987.11100745

]]>
Tropilaelaps https://www.beeculture.com/tropilaelaps/ Sat, 01 Apr 2023 12:00:19 +0000 https://www.beeculture.com/?p=44051 https://www.beeculture.com/wp-content/uploads/2023/04/Topilaelaps.mp3
Click Here if you listened. We’re trying to gauge interest so only one question is required; however, there is a spot for feedback!

Read along below!

Tropilaelaps

Is this mite really going to be worse than Varroa? Yes and no.

By: Ross Conrad

Our experience with Varroa has shown how much of a challenge dealing with mites can be. Trying to identify miticides that will not contaminate honey and wax, dealing with mites that develop resistance to our most toxic chemicals, relying on treatments that don’t always work due to weather or temperature issues, the list is long. This is part of the reason that scientists and others have long issued dire warnings should the Tropilaelaps mite ever make its way to European and American shores.

So far Tropilaelaps’ territory has been limited to its native Asia and bordering areas, and four distinct species of Tropilaelaps (T. careae, T. Koenigerum, T. mercedesae, T. Thaii) have been identified to date (Anderson and Morgan, 2007). Tropilaelaps careae and mercedesae are considered to be the most economically important since they are the primary mites that have jumped from their native giant honey bee hosts (Apis dorsata, Apis laboriosa, Apis breviligula) to the western honey bee (Apis mellifera) (de Guzman et al., 2017).

Like varroa destructor, which is also indigenous to Asia, mature Tropilaelaps mites are a reddish-brown color and although the mite is smaller in size (about a third of the size of a varroa mite), the life cycle of Tropilaelaps is similar to that of varroa. Adult female mites enter cells containing older larvae, are sealed in the cells when the workers cap the brood and produce offspring that feed on the developing honey bee pupae. Like honey bees, fertilized eggs develop into female mites and unfertilized eggs produce males. Just like with varroa, the female offspring of a single Tropilaelaps mite are able to mate with their brothers and initiate an infestation. Tropilaelaps moves much quicker than Varroa, reproduces faster than varroa laying eggs in quicker succession and has a much shorter phoretic stage where the mite exists outside the brood cell. While varroa are known to create a single wound and repeatedly visit the site to feed, Tropilaelaps mites create multiple small wounds from which they feed. Unfortunately, just like varroa, Tropilaelaps is known to vector honey bee viruses like Deformed Wing Virus. Tropilaelaps can also spread naturally within a colony, between colonies in the same apiary and among apiaries via hitching a ride on robbing workers or drifting drones (Rath et al., 1991).

Although smaller than a varroa mite, the Tropilaelaps mite is visible to the naked eye and moves much more rapidly than their varroa cousins.

Tropilaelaps also have a severe weakness, the mites are not able to easily feed on mature bees apparently due to the inability of their mouthparts to pierce the hard cuticle layer of adults. While there are some soft areas on an adult bee that the mite could take advantage of, such as at the base of the wings, it is unusual to find Tropilaelaps feeding on adult honey bees. Tropilaelaps primarily feed on the soft-bodied larvae and pupae and must do so regularly or they will die after two to three days. Without a constant supply of larvae and pupae, Tropilaelaps is unable to maintain its rapid reproduction rate and stay alive. This means that in northern climates where honey bees experience a natural period of prolonged brood interruption due to the dearth of Winter, a brood break that is known to severely reduce varroa populations, can also be expected to impact Tropilaelaps in a similar manner, although the mite’s establishment in the temperate regions of South Korea and northern China suggests that a minority of mites (about 15%) are able to somehow adapt to such broodless periods (de Guzman et al., 2017). This may help give northern beekeepers an edge on dealing with Tropilaelaps compared to southern beekeepers whose colonies are unlikely to stop all brood production during the season unless exposed to drought conditions. This also means that swarming, which is known to reduce varroa populations in colonies, can also be expected to reduce Tropilaelaps populations. Also, starting a colony without brood such as through a package of bees is a great way to ensure a colony is Tropilaelaps-free, at least during its initial startup phase.

Another reason to think that Tropilaelaps will not be a major catastrophe for American beekeepers should the mite arrive in North America is by observing the experience of Chinese beekeepers who have been dealing with Tropilaelaps for decades and continue to be the largest producer of honey in the world. Chinese beekeepers are reportedly able to control Tropilaelaps with sublimated sulfur. Additionally, there is evidence that many of the currently approved varroa treatments available in the U.S. are also effective against Tropilaelaps. Current approved varroa mite treatments that have been shown to also reduce Tropilaelaps infestations include formic acid fumigation, Amitraz and fluvalinate (Webster & Delaplane, 2001), Hopguard® and Mite-Away Quick Strips (Pettis, 2017) and formic acid and thymol (Raffique et al., 2012).

As in the case of Varroa Sensitive Hygiene (VSH) where bees are able to detect when varroa are feeding on capped brood, worker bees appear able to detect brood cells parasitized by Tropilaelaps, and have been known to uncap and remove infested pupae (Webster & Delaplane, 2001).

As mentioned before, Tropilaelaps mites need larvae and pupae to feed on or they will die after two to three days. This suggests that bio-mechanical controls such as caging the queen periodically and depriving the colony of brood can keep Tropilaelaps mites at bay by beekeepers that do not wish to use pesticides on their colonies. Another easy way to take advantage of this Achilles heel is to simply divide the colony, moving all brood combs and adhering bees into a new box and leaving the queen and broodless combs and bees in the original hive. The queenless colony will begin rearing a new queen, but the resulting interruption in brood production will kill off all the Tropilaelaps mites. Meanwhile, the mites will also all die out in the queenright half of the hive since there will be no brood to feed on and it will be approximately three days before any new eggs the queen lays can hatch and form larvae that the mites need for food. If this process is carried out at the end of the nectar flow, no honey production need be sacrificed and colony numbers can either be expanded by keeping the newly created hives or hive populations can be maintained by recombining the colonies.

Due to their short phoretic phase, traditional varroa detection methods such as the sugar shake or alcohol wash, are ineffective in detecting Tropilaelaps. Instead, beekeepers will have to rely upon brood uncapping, bump testing, sticky board inspection and thorough colony inspections. Tell-tale signs of Tropilaelaps infestation are irregular brood patterns and perforated brood cappings caused by sanitary behavior of the bees. Similar to hives heavily infested with varroa, adults in colonies heavily infested with Tropilaelaps are likely to have stunted abdomens, deformed wings and exhibit parasitic mite syndrome symptoms. It is commonly reported that heavily infested colonies will abscond from their hive.

When varroa first arrived, American beekeepers didn’t know much about the mite’s biology and we didn’t have any approved treatments available. We were basically starting from square one. With Tropilaelaps, things are much different and therefore should the mite appear in American beeyards, there is every reason to expect a much less destructive and disruptive experience for most beekeepers. Good news is not easy to come by these days so we should take it wherever we can find it.

Ross Conrad is author of Natural Beekeeping, Revised and Expanded 2nd edition and The Land of Milk and Honey: A history of beekeeping in Vermont. Ross will be teaching a beginner beekeeping class the weekend of May 20-21, 2023 and an intermediate class on June 4, 2023. For more information or to register for either class visit dancingbeegardens.com

References:
Anderson, D. L. and Morgan, M. J. (2007) Genetic and morphological variation of bee parasitic tropilaelaps mites (Acari: Laelapidae): New and re-defined species, Exp. Appl. Acarol, 43:1-24
De Guzman, L.I., Williams, G.R., Khongphinitbunjong, K., Chantawannakul, P. (2017) Ecology, Life History, and Management of Tropilaelaps Mites, Journal of Economic Entomology, 110(2):319-332
Petis, J.S., Rose, R., Chaimanee, V. (2017) Chemical and cultural control of Tropilaelaps mercedesae mites in honey bee (Apis mellifera) colonies in Northern Thailand, PLOS ONE
Raffique, M.K., Mahmood, R., Aslam, M., Sarwar, G. (2012) Control of Tropilaelaps clareae mite by using formic acid and thymol in honey bee Apis mellifera L. colonies, Pakistan Journal of Zoology, 44(4): 1129-1135
Rath, W., Delfinado-Baker, M., Drescher, W. (1991) Observations on the mating behavior, sex ratio, phoresy and dispersal of Tropilaelaps clareae (Acari: Laelapidae), International Journal of Acarology, 17(3): 201-208.
Webster, Thomas C. and Delaplane, Keith S. (2001) Mites of the Honey Bee, Dadant & Sons, Hamilton, IL
Woyke, J. (1985) Further investigations into control of the parasitic bee mite Tropilaelaps clareae without medication, Journal of Apicultural Research, 24(4): 250-254

]]>
Time to Expect the Unexpected https://www.beeculture.com/time-to-expect-the-unexpected/ Wed, 01 Mar 2023 13:00:00 +0000 https://www.beeculture.com/?p=43917 https://www.beeculture.com/wp-content/uploads/2023/03/Ross-drought-Audio.mp3
Click Here if you listened. We’re trying to gauge interest so only one question is required; however, there is a spot for feedback!

Read along below!

Time to Expect the Unexpected

“Beekeepers commonly claim that during times of nutritional stress or dearth, the queen will stop laying eggs… Unfortunately, this common belief does not appear to be totally accurate.”

By: Ross Conrad

Last season I killed off a perfectly good colony of bees. Not purposely, mind you. Believe me, I thought I was doing what was best for the bees – until I thought again.

It was mid-September when I noticed that a colony in one of my Vermont beeyards had no brood. This is a situation I have gotten somewhat used to. After harvesting the honey supers between the end of August and early September, all the bees get crowded down into the equivalent of two to 2½ deep supers and they sometimes send off a late season swarm. I figure that the part of the colony left behind following these late season swarms have a more difficult time successfully replacing their queen due to the cooler weather, lower drone population and reduced forage that typically occur here in the northeast at that time of year. All too often in September and October, I have seen colonies become queen-less, or turn into drone layers, and I have typically attributed this situation to the poor mating conditions that exist at this time of the season. It’s beekeeping and stuff happens.

Rather than simply let these queenless colonies slowly fizzle out, and possibly get invaded by wax moths, I have always preferred to place any full honey supers from the queenless hive on colonies that could use more honey for Winter. The hive bodies full of bees get temporarily placed on top of the inner covers of colonies that could use a boost in their bee population. As I was breaking this queenless hive up to share its resources between some of the other colonies in the apiary, I noticed that the hive was unusually full of bees. The population was much more than I would expect for a hive that didn’t have a laying queen. Then I saw the queen. She looked perfectly normal. In fact more than normal; she looked good. But I judged her on her performance and there was no brood, and without the ability to raise new workers a colony is doomed.

Now, I don’t normally subscribe to the management style of killing off queens and replacing them, but when combining a colony with a queen that is no good with a queenright hive, I will kill the failed queen just to be sure she doesn’t somehow replace or injure the good queen. This queen was not laying eggs so she had to go.

Then about two and a half weeks later, well into November, the weather finally turned cold enough to kill off the wax moths. I went around removing the empty supers I had stored above the inner covers of my hives to place them in an unheated shed for Winter. I like to go out early in the morning to do this while it is still cold and the bees have not warmed up and broken out of the cluster around the brood nest. This makes taking off the empty supers much easier and faster since I don’t have to light a smoker because the bees are all down below the inner cover and slow to take flight.

My Ah-Ha! Moment
I didn’t think much more about this queenless hive until the holiday season when I ran into another beekeeper and we did what beekeepers tend to do when they get together: we talked about the bees. This beekeeper told me that he had noticed some of his colonies shutting down their brood rearing much earlier in the season than normal. He attributed this to the very dry weather we had experienced late in the Summer and that’s when I got this sinking feeling in the pit of my stomach and realized that it was highly likely that I had destroyed a perfectly good colony of bees.

Science has already determined that in a high carbon dioxide atmosphere, plants on earth produce more carbohydrates and less protein which has resulted in a dramatic decrease in the protein content of pollen over the past century. When this greenhouse-gas induced protein reduction is combined with drought induced protein declines in pollen, the resulting dietary deficiency of protein on honey bee colonies can be severe.

The Drought Response of Plants
The impacts of drought can be much more subtle than the increased incidences of wildfires we have seen around the globe in recent years. Plants in temperate climates typically need much larger quantities of water than bees do, and the negative consequences of dry weather conditions on flowering plants is well documented.

One effect of drought on vegetation is a reduced rate of photosynthesis (Pinheiro and Chaves, 2011), which leads to a reduction of energy available for plants to invest in the production of flowers. This means fewer and smaller blossoms are produced by effected plants (Kuppler & Kotowska, 2021).

When plants are able to produce flowers during drought conditions the blossoms produce less pollen (Waser & Price, 2016) and the pollen produced is more likely to be of low quality with reduced protein content and less reproductively viable (Al-Ghzawi et al., 2009; Rankin et al., 2020; Descamps et al., 2021). Even the scents that flowers use to attract and influence pollinators are impacted by extremely dry conditions (Burkle & Runyon, 2016; Rering et al., 2020).

Nectar production in flowers is likewise negatively impacted by drought. Generally speaking there needs to be water in the soil in order for plants to produce nectar. Reduced water availability is linked to lower nectar volume in flowers (Carroll et al., 2001; Phillips et al., 2018; Gallagher & Campbell, 2017; Halpern et al., 2010; Villarreal & Freeman, 1990). Sometimes, even the sugar concentration of the nectar produced under drought conditions is negatively impacted (Wyatt et al., 1992; Waser & Price, 2016; Rankin et al., 2020).

Droughts Effect on Bees
Since drought conditions cause plants to produce less pollen and nectar and any pollen and nectar that is produced tends to be of lower quality, it is generally accepted that drought conditions result in nutritional stress to honey bee colonies. Beekeepers commonly claim that during times of nutritional stress or dearth, the queen will stop laying eggs. This is commonly observed in northern climates during the Winter months when brood production slows dramatically and often stops altogether during Winter. Unfortunately, this common belief does not appear to be totally accurate.

Back in 2004, Austrian researchers found that in times of nutritional stress the queen does not necessarily stop laying eggs or even reduce her egg laying, but she does reduce her walking activity within the hive (Schmickl & Crailsheim, 2004). The colony response that does appear to be consistent with lack of adequate food availability is that worker bees will cannibalize eggs and larvae to conserve nutrients (Webster et al., 1987). Eggs and middle-aged larvae are the most likely to be cannibalized. This causes the colony’s larvae demographics to change dramatically within days resulting in a rapid decrease in the older larvae population. During nutritional stress events such as those that occur during a prolonged drought, cells containing the oldest larvae are capped earlier for pupation, while the eggs and younger larvae are cannibalized (Schmickl & Crailsheim, 2001). Researchers found that the less pollen stored by the hive during larvae’s development, the earlier the larvae are capped. This is a logical decision by the bees since the oldest uncapped brood represents the greatest investment in brood care resources. Prior to capping, older larvae also have the greatest need for pollen, so by capping their cells early, the colony is able to compensate for a food supply shortage by reducing the young with the greatest demand. This leads to a quick reduction of older unsealed brood in response to a shortage of available protein. If a period of dearth extends long enough, all the capped brood will hatch and there will be no brood left in the hive due to the egg cannibalization efforts of the nurse bees. This explains why my broodless colony had a queen that looked perfectly normal and she was not shrunken and small from a lack of egg production like a virgin queen who has yet to lay eggs.

A Taste of Things to Come
Under climate change, extreme climatic events such as droughts are projected to increase in frequency, duration and severity (IPCC, 2022). In temperate regions, the consequences of water deficit during the peak growing months can be expected to be more severe because drought has not previously been an important environmental factor on plant evolution like it has been in arid regions (Chen et al., 2013).

Current predictions suggest that in temperate zones such as those throughout the northeastern U.S., climate change will increase the frequency of extreme events such as Summer droughts, leading to deficits in water availability for ecosystems. This is expected to result in plants more often experiencing water stress during the Spring and Summer. As beekeepers we need to be conscious of the fact that the current pace of climate destabilization will continue to accelerate due to our slow transition away from fossil fuels, rampant consumerism and materialism. This will cause our honey bee colonies to behave differently than what we have grown used to during previously more climate stable times.

I definitely learn more from my mistakes than from my successes. In sharing this experience, I am reminded that we all have something we can teach others, even if we only act as a stellar example of what not to do.

Ross Conrad is the author of Natural Beekeeping: Organic Approaches to Modern Apiculture and coauthor of The Land of Milk and Honey: A history of beekeeping in Vermont.

References:
Al-Ghzawi, A.A.M., Zaitoun, S., Gosheh, H., Alqudah, A. (2009) Impacts of drought on pollination of Trigonella moabitica (Fabaceae) via bee visitations, Archives of Agronomy and Soil Science, 55(6): 683-692
Burkle, L.A. & Runyon, J.B. (2016) Drought and leaf herbivory influence floral volatiles and pollinator attraction, Global Change Biology, 22: 1644-1654
Carroll, A.B., Pallardy, S.G., Galen, C. (2001) Drought stress, plant water status, and floral trait expression in fireweed, Epilobium angustifolium (Onagraceae), American Journal of Botany, 88(3): 438-446
Chen, T., van der Werf, G.R., de Jeu, R.A.M., Wang, G., Dolman, A.J. (2013) A global analysis of the impact of drought on net primary productivity, Hydrology and Earth System Sciences, 17: 3885–3894, https://doi.org/10.5194/hess-17-3885-2013
Descamps, C., Quinet, M., Jacquemart, A.L. (2021) The effects of drought on plant-pollinator interactions: What to expect? Environmental and Experimental Botany, 182: 014297
Gallagher, M.K. & Campbell, D.R. (2017) Shifts in water availability mediate plant-pollinator interactions, New Phytologist, 215(2): 792-802
Halpern, S.L., Adler, L.S., Wink, M. (2010) Leaf herbivory and drought stress affect floral attractive and defensive traits in Nicotiana quadrivalvis, Oecologia, 163: 961-971
IPCC – International Panel on Climate Change (2022) IPCC Sixth Assessment Report: Impacts, Adaptation and Vulnerability, https://www.ipcc.ch/report/ar6/wg2/
Kuppler, J. & Kotowska, M.M. (2021) A meta-analysis of responses in floral traits and flower-visitor interactions to water deficit, Global Change Biology, 27(13): 2095-3108
Phillips, B. B., Shaw, R. F., Holland, M. J., Fry, E. L., Bardgett, R. D., Bullock, J. M., Osborne, J. L. (2018) Drought reduces floral resources for pollinators, Global Change Biology
Pinheiro, C. & Chaves, M.M. (2011) Photosynthesis and drought: Can we make metabolic connections from available data? Journal of Experimental Botany, 62: 869-882
Rankin, E. E. W., Barney, S. K., Lozano, G. E. (2020) Reduced water negatively impacts social bee survival and productivity via shifts in floral nutrition, Journal of Insect Science, 20(5): 15
Rering, C.C., Franco, J.G., Yeater, K.M., Mallinger, R.E. (2020) Drought stress alters floral voatiles and reduces floral rewards, pollinator activity, and seed set in a global plant, Ecosphere, 11(9)
Schmickl, T. & Crailsheim, K. (2001) Cannibalism and early capping: strategies of honey bee colonies in times of experimental pollen shortages, Journal of Comparative Physiology A, 187: 541-547
Schmickl, T. & Crailsheim, K. (2004) Inner nest homeostasis in a changing environment with special emphasis on honey bee brood nursing and pollen supply, Apidologie, 35: 249-263
Villarreal, A.G. & Freeman, C.E. (1990) Effects of temperature and water stress on some floral nectar characteristics in Ipomopsis longiflora (Polemoniaceae) under controlled conditions, Botanical Gazette, University of Chicago Press
Webster, T.C., Peng, Y.S., Duffey, S.S. (1987) Conservation of nutrients in larval tissue by cannibalizing honey bees, Physiological Entomology, 12(2): 225-231
Waser, N. M., Price, M. V. (2016) Drought, pollen and nectar availability, and pollination success, Ecology, https://doi.org/10.1890/15-1423.1
Wyatt, R., Broyles, S.B., Derda, G.S. (1992) Environmental influences on nectar production in milkweeds (Asclepias syriaca and A. exaltata), American Journal of Botany, 79(6):636-642

]]>
The Electrical World of the Honey Bee https://www.beeculture.com/the-electrical-world-of-the-honey-bee/ Wed, 01 Feb 2023 13:00:44 +0000 https://www.beeculture.com/?p=43750 https://www.beeculture.com/wp-content/uploads/2023/02/Electrical-bee.mp3
Click Here if you listened. We’re trying to gauge interest so only one question is required; however, there is a spot for feedback!

Read along below!

The Electrical World of the Honey Bee

By: Ross Conrad

It has been said that honey bees have been studied and written about more than any other subject second only to ourselves. Certainly our deep understanding of bees is part of what makes them so fascinating. Yet for all we know about bees, there’s much we still do not understand. One area of inquiry in which we have only scratched the surface of our knowledge is the role electricity plays in the life of the colony.

It is well established that insects become electrostatically charged when walking, or when their body parts are rubbed together (Colin and Chauzy, 1991) and insect cuticles in general display the tendency to become positively charged (Edwards, 1962). This phenomenon is similar to the static electricity generated when we walk across a wool carpet or rub an inflated balloon against our hair.

It is also clear that bees become charged with a weak electric charge when flying through the air. How this occurs is not clear however. There are two main theories why this happens. One is that it is a result of friction. The other is that the flying bee picks up positively charged ion particles (cations) from the air. Which one is true? Do both potential charging methods play a role? We do not know. What we do know is that since bees are quite small, they experience weak electrical fields much more profoundly than we do.

The static electric charge that builds up on the bee’s body while it flies greatly increases its pollen collecting efficiency.

Flowers are electrically connected to the earth and pick up a negative charge through electrostatic induction. Bees pick up a positive charge as they fly through the air. The bee’s body surface charge appears to facilitate pollination since flowers are negatively charged and bees are positively charged (Greggers et. al., 2013b). The attraction of pollen to bees due to their opposite polarity allows pollen to defy gravity, moving against the earth’s gravitational forces in order to stick to the surface of the bee and become lodged in its body hairs (Clarke et al., 2017).

The acquisition and maintenance of charge on a bee appears key to their ability to detect electric fields such as that on a flower (Sutton et al., 2016). While it seems clear that the static electric charge aids in pollen collection by foragers, do these electrical forces (between bee and flower) allow the forager to also assess floral rewards and perhaps allow them to tell which flowers have been recently visited by another pollinator and which have not and therefore which blossoms are worth taking the time to investigate and which are a waste of time?

Some research indicates that the change in electrical charge created by pollinator visits to blossoms stimulate some flowers to release more of their scent thus increasing their chances of being pollinated (Montgomery, 2021). Since flowers have a limited supply of scent, some appear to prefer to release it when pollinators are around – after all, it makes sense that the best time to advertise is when you know you have an audience.

Electrostatic dusting is used to reveal areas of the greatest negative charge density on each flower. Flowers are shown before (left) and after (right) dusting with positively charged colored powder of blue or yellow (bottom image). Photo credit: Concept and Pictures by D. Clarke & D. Robert

Meanwhile, agrichemicals such as synthetic fertilizers and the neonicotinoid imidacloprid have been shown to effect bumblebee foraging behavior by changing the magnitude and dynamic of electrical cues given off by the treated blossoms. Researchers found that the biophysical responses in the plants modified floral electrical fields appeared to disturb the ability of the bees to sense the electrical fields causing them to approach the electrically manipulated flowers less often, land on the flowers they did approach less and this reduced bumblebee foraging efficiency (Hunting et al., 2022). The bioelectrical potential of the chemically treated flowers were impacted for a longer duration than the changes observed by natural phenomena like the wind or a bee landing on the flower. This raises questions about what other pesticides might influence the electrical fields of flowers.

Honey bees appear to perceive weak electrical fields through the two joints of the antennae johnston’s organ (Greggers et al. 2013a). Bumblebees can also detect electrical fields with their antennae but appear to do so more effectively using their body hairs (Sutton et al., 2016). Like a sapling bending in the wind, the bee hairs and antennae alert the bee to oppositely charged electric fields. Do honey bee hairs or other rigid cantilevered body parts, carrying an electric charge and subject to external electrical force, also bend toward (or away) from electrically charged objects?

Bees appear to detect and use aerial electric fields not only in the context of foraging but also during in-hive communications over short distances. Research suggests that part of the waggle dance includes low-frequency oscillating electrical stimuli from electrically charged vibrating foragers to yet to be recruited foragers while doing the dance (Greggers et al., 2013b). Does the honey bee use its antennae for other forms of electroreception communication as well? Exactly how bees respond, learn from or exploit electrical fields in their natural habitat and within social contexts is not entirely clear. For example, how does rain, high humidity or winds impact floral electrical fields?

Since each bee carries with it a small electrical charge, what happens when a large group of them swarm? A recent study suggests that honey bees contribute to atmospheric electricity in proportion to the size and density of the swarm that issues from a colony. Researchers calculated that the swarm had enough charge to affect the atmospheric electric field known as the potential gradient, which is the voltage difference between the earth’s surface and a point (often one meter) above it. The effect was proportional to the swarm density. Similar impacts can be observed in swarms of locusts, although their impact is much greater since locust swarms can cover hundreds of square miles and pack between 40-80 million locusts in less than half a square mile. The study authors hypothesize that insects can have similar effects on atmospheric electricity as weather events since at the ground level where they made their measurements; the strength of the honey bee swarm’s electric field was comparable to the kinds of changes in electric fields that we see during a thunderstorm (Hunting, 2022).

Does this mean we need to include the role of insects in geological modeling of atmospheric changes? Scientists have long wondered about what forces can carry sand particles from the Sahara desert across oceans. Could atmospheric changes brought on by the electric fields given off by insects help to explain the long distance dust transportation that has been documented in nature that cannot be explained by physical processes such as wind and updrafts alone (Toth et al., 2020; Does Van der et al., 2018)? Perhaps the charged up bee’s electrical fields add to the electrifying effect the sight of a swarm has on us beekeepers?
So many questions; so few answers, and this is just one small area of inquiry into the amazing and mysterious world of the honey bee.

References:
Colin, M.E., Chauzy, D.R.S. (1991) Measurement of electric charges carried by bees: evidence of biological variations, Journal of Bioelectricity, Vol. 10(1-2), pp. 17-32
Does Van der, M., Knippertz, P., Zschenderlein, R., Harrison, G., Stuut, J.B.W. (2018) The mysterious long-range transport of giant mineral dust particles, Science Advances, 4(12)
Clarke, D., Morley, E., Robert, D. (2017) The bee, the flower, and the electric field: Electric ecology and aerial electroreception, Journal of Comparative Physiology. A Neuroethology, Sensory, Neural, and Behavioral Physiology, 203(9): 737-748
Edwards, D.K. (1962) Electrostatic charges on insects due to contact with different substrates, Canadian Journal of Zoology, 40:579-584
Greggers, U., Koch G., Schmidt, V., Dürr, A., Floriou-Servou, A., Piepenbrock, D., Göpfert, M.C., Menzel, R. (2013a) Reception and learning of electric fields in bees, Proceedings of the Royal Society B, 280: 20130528. Doi:10.1098
Greggers, U., Koch G., Schmidt, V., Dürr, A., Floriou-Servou, A., Piepenbrock, D., Göpfert, M.C., Menzel, R. (2013b) Reception and learning of electric fields in bees, Proceedings of the Royal Society B, 280(1759): 20130528. Doi:10.1098
Hunting, E.R., O’Reilly, L.J., Harrison, R.G., Manser, K., England, S.J., Harris, B.H., Robert, D. (2022) Observed electric charge of insect swarms and their contributions to atmospheric electricity, iScience, 25(11)
Hunting, E.R., England, S.J., Koh, K., Lawson, D.A., Brun, N.R., Robert, D. (2022) Synthetic fertilizers alter floral biophysical cues and bumblebee foraging behavior, PNAS Nexus, vol.1 (5)
Montgomery, C., Vuts, J., Woodcock, C.M., Withall, D.M., Birkett, M.A., Pickett, J.A., Robert, D. (2021) Bumblebee electric charge stimulates floral volatile emissions in Petunia integrifolia but not in Antirrhinum majus, The Science of Nature, 44:108
Sutton, G.P., Clarke, D., Morley, E.L., Robert, D., (2016) Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields, Proceedings of the National Academy of Science, 113(26): 7261-7265
Toth, J.R. III, Rajupet, S., Squire, H., Volbers, B., Zhou, J., Xie, L., Sankaran, R.M., Lacks, D.J. (2020) Electrostatic forces alter particle size distributions in atmospheric dust, Atmospheric Chemistry and Physics, 20.5: 3181-3190

]]>
The Elusive Varroa Resistant European Honey Bee https://www.beeculture.com/the-elusive-varroa-resistant-european-honey-bee/ Sun, 01 Jan 2023 13:00:59 +0000 https://www.beeculture.com/?p=43535 https://www.beeculture.com/wp-content/uploads/2023/01/Elusive-resistant-honey-bee-final-export.mp3
Click Here if you listened. We’re trying to gauge interest so only one question is required; however, there is a spot for feedback!

Read along below!

The Elusive Varroa Resistant European Honey Bee

What will it take to permanently establish a truly mite tolerant honey bee in the general managed honey bee population?

By: Ross Conrad

Varroa destructor has been parasitizing honey bees throughout the United States for over 35 years and to date, efforts to breed permanent mite resistance into the honey bee have largely failed. The incredibly robust nature of the honey bees mating process helps ensure wide genetic diversity, a diversity that enables the honey bee to survive on six of the seven continents of the globe across the vast majority of latitudinal parallels. So far, the mating process of the European honey bee has precluded the ability for beekeepers to be successful in their attempts to raise, disseminate and maintain a truly mite resistant bee.

An abundance of suitors
Honey bees mate in places where the drones from colonies in the surrounding area congregate and wait for virgin queens to fly by. Mating takes place on the wing approximately 20-80 feet (six to 24 meters) up in the air, and it is the fittest and fastest drones that get to pass on their genes to future generations. Studies suggest that these drone congregation areas (DCA) stay consistent decade after decade unless a building is erected on the site.

DCAs attract male bees from quite a wide area. Researchers in Denmark and the United Kingdom found that while 50% of bees studied mated within about 1.5 miles (2.5 km) of their hive, a full 90% of the bees were observed to mate within a distance of 4.5 miles (7.5 km) (Jensen et. al., 2005). While the maximum distance the European researchers observed matings to occur was 9.3 miles (15 km), other studies have documented matings covering distances between 10.1 and 12.4 miles (16.25-20 km) (Peer, 2012; Szabo, 1986). As a rule, drones tend to seek DCAs near their hives, while queens will seek DCAs farther away. This behavior helps to reduce instances of inbreeding between brothers and sisters.

Queens typically mate within six to 10 days after emergence and on average, most queens will mate with somewhere around 15-20 drones over the course of one or two days (Koeniger et. al., 2014). Drones become sexually mature when they are around 12 days old. Mating flights of the queen and drones is highly dependent upon the weather conditions. Leaving the safety of the hive to participate in the mating process is a dangerous time for both drones and queens. Their relatively large size and slow flight speed make them vulnerable targets for a host of predators from birds to dragonflies.

Males designed for the job
While workers are extremely attentive to the queen within the hive, drones and queens pay little-to-no attention to each other inside the hive. Outside the hive however, the drone’s keen sensory organs allow them to identify queen bees easily. It is believed that the primary drone attractant that a queen exudes is a mating pheromone known as 9-oxo-2-decenoic acid (9 ODA) (No the x’s and o’s don’t represent hugs and kisses). Male bees are endowed with many more scent receptors on their antennae than workers or queens, and are reportedly able to smell very small quantities of 9 ODA, and detect this queen substance from up to 200 feet (60 m) away (Caron and Connor, 2013).

The drone is also equipped with large compound eyes that contain many more tiny lenses (facets) than the worker and queen. This allows the male bees to easily spot the queen after they have used her scent to navigate near the queen’s vicinity.

Typically, healthy colonies will produce the most drones, and colonies in the process of replacing their queen will tend to exhibit higher drone production than usual. In an apparent last desperate attempt to pass on their genetic heritage, the workers in queen-less colonies will start laying unfertile eggs and raising numerous drones in the hope that some of their sons may successfully mate with a virgin queen.

The genetic make-up of a honey bee colony changes whenever a colony swarms and replaces their old queen with a new one. This is the primary reason efforts to breed resistant bees, or just let bees naturally evolve to become resistant to mites, have failed so far.

The challenge of maintaining genetic traits
As described previously, the honey bees mating process makes it extremely difficult to maintain genetic purity without isolating the queens from the drones of colonies that do not carry the preferred genetic traits. This is why reports of truly mite resistant honey bees primarily come from colonies that have been kept in isolated locations such as on islands. Some queen breeders will flood areas with drones from selected colonies in an effort to overcome the likelihood that their selected stock will mate with local unselected bees. While this often works well for queen breeders, the average beekeeper that purchases these queens typically does not work to maintain the genetic purity of the bee strain, and the beneficial aspects that have been bred into the honey bee tends to get lost quickly through inter-breeding and hybridization of subsequent generations of queens.

This cycle of breeders working hard to improve their stocks and the loss of many, if not most, of the beneficial traits bred into the bees once they are in the general beekeeping community’s care will continue unless beekeepers make serious changes. Beekeepers would have to work to limit the opportunity for hybridization by either isolating their bees, or working to replace all the bees in an area with selected stock. Even then, there is always the significant likelihood that feral colonies in the area will inter-breed with managed colonies and dilute the gene pool with non-selected traits. The difficulty in maintaining specific genetic traits appears to be the reason why after more than three decades, the beekeeping industry is still not able to take full advantage of the mite tolerant and resistant strains of bees that bee breeders have had some measure of success raising to date.

The Africanized solution
I have come to believe a possible solution to this apparently insolvable problem is the Africanized honey bee (AHB). The AHB is a hard working bee with superior competitive foraging behavior and exhibits resistance to mites and many diseases. This bee also has unique mating characteristics that suggest that they may provide the answer to the hybridization challenges that the beekeeping industry faces in its efforts to breed and maintain specific genetic characteristics in the general managed honey bee population.

South America’s experience with direct competition between the European honey bee (EHB) and African bees resulted in the quick elimination of EHB in the tropics. Although a low level of hybridization has occurred, Africanized genetic traits predominate in the South American honey bee population (Schneider et. al., 2004) making them a challenge to work with due to their highly developed defensive behavior. Several factors are suggested to help explain the domination of AHBs over EHBs when it comes to mating.

Working with traditional breeding techniques to try to produce and maintain queens with specific genetic traits has proven elusive, but
perhaps nature can succeed where beekeepers and scientists have mostly failed.

Overwhelming numbers
Africanized bees have an extremely high swarming rate, with colonies being documented to swarm an average of three to four times a year and as much as every 50 days (Michener, 1975; Taylor, 1977; Winston, 1979). This means that under normal circumstances, new AHB queens are produced at a much faster rate than EHB queens. AHB queens also reach sexual maturity faster giving them a biological edge over EHB queens born at the same time. Even in colonies headed by an EHB queen that has mated with both EHB and Africanized drones, faster development of queens with Africanized genetics favor AHB queens. Virgin Africanized queens tend to emerge earlier, pipe more frequently and kill more rival queens than those with EHB genetics (DeGrandi-Hoffman et. al., 1998; Hepburn and Radloff, 1998; Schneider and DeGrandi-Hoffman, 2003; Schneider et al., 2004).

On the other side of the mating equation, AHB drones out compete their EHB counterparts when it comes to the mating process. First, Africanized bees raise proportionally more drones than EHB colonies. They also raise drones earlier in their population buildup cycle, and they have more drones present in their colonies throughout a greater portion of the season (Rinderer et al., 1987). This results in more drones being present in Africanized hives than in European hives. Since AHB drones use the same DCAs that EHBs do, they simply outnumber them and the odds that a virgin queen will mate with an AHB drone rather than an EHB drone increase dramatically.

Parasitism
AHB drones are known to regularly drift into EHB colonies where they are readily accepted in a behavior that is called drone parasitism, but the opposite is not true (Rinderer et al., 1987). Africanized bees rarely allow drones of other races, or of mixed race to enter their hives. Africanized colonies then raise more drones to replace those lost to drifting, while EHB colonies raise fewer drones due to the influx of AHB drones. This significantly decreases EHB drones in an area essentially flooding the area with AHB drones.

Africanized swarms are also known to take over EHB colonies through usurpation (queen parasitism). Swarming AHBs will land near the entrance of an EHB colony and the AHB workers will gradually make their way into the colony, kill off the EHB queen and replace her with their AHB queen. The opposite, usurpation of AHB colonies by EHB colonies is not known to occur.

Unique behaviors
Several special behaviors of the Africanized bee endow it with additional advantages over the European honey bee when it comes to species survival. African bees are more widely adapted to utilize a diversity of cavities for nesting and can successfully nest outside if nesting cavities are sparse. AHBs are known to migrate readily and abscond, abandoning sites with few resources or heavy predator activity in preference of more favorable locations. Africanized bee swarms also combine with each other more readily than EHB swarms, providing a greater chance of swarm survival.

The AHBs biological advantages, ability to parasitize EHB colonies and unique behaviors all appear to contribute to the success of the AHB in displacing the EHB in both tropical and subtropical environments. Under the open mating conditions prevalent through most of the world, the mating characteristics of the AHB suggest that it could succeed in anchoring mite resistant traits into managed bee populations where efforts to do so working with European honey bees alone have largely failed. The key to this approach would be in finding an Africanized bee that is gentle to work with but has retained the majority of its mating characteristics so that eventually most, if not all managed bees would carry the beneficial Africanized genetic traits of resistance to mites and disease.

Ross Conrad is coauthor of the Land of Milk and Honey: A history of beekeeping in Vermont.

References:
Caron, Dewey, Connor, Larry (2013) Honey Bee Biology and Beekeeping, Wicwas Press, pg. 128
DeGrandi-Hoffman, G. et al. (1998) Queen development time as a factor in the Africanization of European honey bee (Hymenoptera: Apidea) populations, Annals of the Entomological Society of America, 91:52-58
Hepburn, H.R., Radloff, S.E. (1998) Honey bees of Africa, Spring-Verlag, Berlin, Heidelberg, Germany, pg. 371
Jensen, A.B., Palmer, K.A., Chaline, et. al. (2005) Quantifying honey bee mating range and isolation in semi-isolated valleys by DNA microsatellite paternity analysis. Conservation Genetics, 6: 527–537 https://doi.org/10.1007/s10592-005-9007-7
Koeniger, G, Koeniger N, Ellis, J., Connor, L (2014) Mating biology of honey bees (Apis mellifera), Wicwas Press, pg. 40
Michener, C.D. (1975) The Brazilian bee problem, Annual Review of Entomology, 20: 399-416
Peer, D.G. (2012) Further Studies on the Mating Range of the Honey Bee, Apis mellifera L., Cambridge University Press
Rinderer, T.E., Collins, A.M., Hellmich II, R.L., Danka R.G., (1987) Differential drone production by Africanized and European honey bee colonies, Apidologie, 18: 61-6
Schneider, S. and DeGrandi-Hoffman, G. (2003) The influence of paternity on virgin queen success in hybrid colonies of European and African honey bees, Animal Behavior, 65: 883-892
Schneider S. et al. (2004) The African honey bee: Factors contributing to a successful biological invasion, Annual Review of Entomology, 49: 351-376
Szabo, Tibor I. (1986) Mating Distance of the Honey bee in North-Western Alberta Canada. Journal of Apicultural Research, 25: 227-233
Taylor, O.R. (1977) The past and possible future spread of Africanized honey bees in the Americas, Bee World, 58: 19-30
Winston, M.L. (1979) Intra-colony demography and reproductive rate of the Africanized honey bee in South America, Behavioral Ecology and Sociobiology, 4: 279-292

]]>
The Best Tasting Honey in the World https://www.beeculture.com/the-best-tasting-honey-in-the-world/ Thu, 01 Dec 2022 13:00:16 +0000 https://www.beeculture.com/?p=43262 https://www.beeculture.com/wp-content/uploads/2022/12/Ross-December-2022-Audio.mp3
Click Here if you listened. We’re trying to gauge interest so only one question is required; however, there is a spot for feedback!

Read along below!

The Best Tasting Honey in the World

By: Ross Conrad

Here’s a subjective headline for you. For most beekeepers, the best tasting honey in the world is the honey they harvest from their own hives. All the planning, worry, sweat, stings and sore muscles that go into every jar accentuates the taste of one’s own honey. But how well does the taste of that honey stand up to others when judged by a group of people who know nothing about you or your honey and have to evaluate your honey solely by taste? That’s a question the Center for Honey Bee Research can help you answer. The non-profit organization located in Asheville, North Carolina is the host of their annual black jar international honey contest.

For those of you not familiar with the term, a black jar contest is a honey contest that is supposed to be judged solely on the taste of the honey. I say “supposed to be” because I entered a black jar contest once down in Florida and my honey was disqualified because it was raw honey that had crystallized. Clearly not all black jar contests are judged solely by taste, but there is one honey contest that really is judged only on taste, and that is the one held by the Center for Honey Bee Research. I had a chance to speak with the winners of the Center for Honey Bee Research’s 2022 black jar contest, Genevieve and Richard (Rick) Drutchas of Worcester, Vermont.

This year’s trophy for the best tasting honey in the world goes to Richard and Genevieve Drutchas.

After serving as the first full-time bee inspector for the state of Vermont, Rick Drutchas developed a small commercial beekeeping business that lasted about 20 years. In 2010, he sold most of his beekeeping business but kept his favorite apiary spots and now, at age 72, works to keep about 100 colonies.

I asked Rick why he decided to enter the Center for Honey Bee Research black jar contest. “The honey contests at honey shows go on about how clear it is, or if there’s a little foam at the top, or if there’s a nick in the lid of the jar: all kinds of silly stuff. This is a contest where they’re just going for flavor and that felt good.” As Rick explains entering the contest was kind of an afterthought. “We had heard about the contest but then forgot about it. Then as the deadline was coming up, we just grabbed some honey out of a five gallon bucket from our home yard, threw it into some plastic quarts and sent it off.”

According to Genevieve Drutchas, the honey that netted them the grand prize was not their typical Vermont honey. “We took a late Fall crop from our home yard last year and it was really interesting – kind of a buckwheat, japanese knotweed, goldenrod mix. We had a field that Rick had put buckwheat in that the bees really loved and the river along our place was just loaded with knotweed as so many places are now, so it was pretty clear where the honey came from in such a short time frame and it was definitely a beautiful and interesting flavor spectrum… I love the japanese knotweed flavor. To me, it’s sort of reminiscent of an elder-flower syrup but this honey had a couple of different flavors, and when I say that what I mean is you would have like a seven second experience. There was a first hit, then a second hit and then there was the aftertaste. There were a lot of different flavors in there… and it definitely had that nice silky cream that you sometimes get in the later Fall honeys—a fine crystal and very creamy. You know how a goldenrod can be almost silky like lingerie when it crystallizes? It had that kind of consistency.”

Rick Drutchas checking on some of his nucleus colonies.

After speaking with Rick and Genevieve, I managed to catch up with the Executive Director of the Center for Honey Bee Research in Asheville, Carl Chesick, to ask him about the contest and the judging process that evaluates over 600 entries from across the globe. “It varies from year to year. We never know exactly who’s going to enter. We’ve had 42 different countries around the world that have been competing in various years. Our categories are not fixed because we base it on what entries we get. We take a look at all the entries and figure out what categories will give the fairest chance to everybody… we have 10 categories and the category winners get $150, a custom ribbon with their name printed on it, a certificate and bragging rights. (The grand prize winner got $5,500 – RC) We have a lot of preliminary rounds, always with at least five judges. They don’t know anything about where the honey’s from. The highest scoring go on to subsequent rounds until we get down to the 30 finalists. While the judges don’t know, I know what the categories are because I get all the entries from around the world, so a lot of times they’re geographical, like we had Europe, Africa, the Far East, that kind of thing. We also had a category that Genevieve and Richard won in, creamed honey. Years ago we didn’t have a creamed honey category because here locally, people think anything that is solid is honey that has gone bad. So we’ve been doing an educational thing since then and what we realize is people really like creamed honey, provided that the particles are fine enough, and sometimes it’s accidental and sometimes they really work hard to get that. So if we get an entry that’s already crystallized, I look at it and take a little taste and see if it’s got fine particles or not. If it’s fine enough then it will go as a creamed honey.

“Now the judges don’t get to see the honey, but when you’ve got creamed honey you can’t put it up against liquid honey and expect that it’s going to even out apples-to-apples. We get a lot of honey’s that are really dark and are strongly flavored honeys so we usually put those in the preliminary rounds where they’re against each other so they get an apples-to-apples judgment. It is only in the finals where there’s going to be dark honeys against water white honeys.

“Mono-floral is a category usually. A couple years ago, since we have sourwood down here, we had like 110 entries that specified they were sourwood. So, they had to go together and that was a really competitive category that year… If the honey has a uniqueness like a dark honey, or a creamed honey, or a mono-floral honey where they’ve stated it’s from a particular source then those are all going to be categories, but the rest of them, if one’s from Holland and one’s from Wisconsin, I feel like they should go in different categories and it’s subjective. It’s the board looking at the entries and trying to decide what’s the fairest way to break them up.”

The judges don’t know what the categories are and solely judge each honey on its taste. Once their ratings have determined the top three entries in each of the 10 categories, they go on to the finals. Once a winner in each category is determined, the 10 category winners go up against each other for the grand prize.

According to Chesick, “We don’t let the judges talk to each other about the honey because the first year or two they did, and they were like ‘ooh that’s good’ or ‘that one’s got whatever’ and the alpha people would influence all the rest of the judges and the scores were all the same. So we said right, you can’t make faces and you can talk to each other about anything you want in between the tastings but you can’t talk about the honey.”

I asked Genevieve what advice she would offer to those who might want to enter next year’s 12th annual black jar international honey contest. “What the judges seem to be going for is the interesting raw flavor spectrum and we’re in that moment right now with nectar sources changing as they are with the climate crisis weather and invasive species. The winners have been all over the place from classic Italian rural honeys to unusual varieties that a beekeeper in New Zealand who’s not a manuka maker, he’s making another unusual smaller nectar sourced honey and he’s won twice. I think what they’re looking for is interesting honey that still fits that classic spectrum of yum, a crazy delicious honey kind-of deal but they work pretty hard to have different people in all the realms of tasting so a whole lot of people are giving you feedback on your honey when you enter the contest and that alone is a valuable thing.”

She went on to reflect: “At this point in Rick’s beekeeping life this (recognition) was really meaningful. With all the changes in beekeeping and just choosing this life-style in Vermont, it was really meaningful in a sweet way to win something like this.”

Next year’s black jar contest is expected to feature a grand prize of $6,000. The festival event where the category finalists will square-off against each other is scheduled for June 4, 2023 at Salvage Station in Asheville, N.C.

Note: The interview quotes in this article were lightly edited for clarity and length.

Ross Conrad is author of Natural Beekeeping and co-author of the Land of Milk and Honey: A history of beekeeping in Vermont

]]>
Winter Insulation Revisited https://www.beeculture.com/winter-insulation-revisited/ Tue, 01 Nov 2022 12:00:33 +0000 https://www.beeculture.com/?p=42952 https://www.beeculture.com/wp-content/uploads/2022/11/Insulation-Revisited.mp3
Click Here if you listened. We’re trying to gauge interest so only one question is required; however, there is a spot for feedback!

Read along below!

Winter Insulation Revisited

With a Healthy Serving of Crow

By: Ross Conrad

The September 2022 issue of Bee Culture contained an article about Winter insulation where I theorized that the difference in insulation value of the wood making up a hollow tree and a standard Langstroth hive is not so significant that it would make much difference to a colony of bees overwintering inside. Then I read an article published in the August 2022 issue of the American Bee Journal written by Robin Radcliffe and Thomas Seeley titled, Thinking outside the box: Temperature dynamics in a tree cavity, wooden box and Langstroth hives with or without insulation. The article described the results of trials that measured temperature fluctuations inside various cavities observed between November 2019 and May 2021.

Radcliffe and Seeley compared the ambient outside temperature with the temperatures inside a living hollowed out maple tree, and a plain wooden box, both with cavities that matched in size and shape. They also looked at the temperature fluctuations in two Langstroth hives occupied by colonies of bees: one hive protected with a wool blanket that provided an insulation value of R-30 and the other without insulation. Ambient temperatures were taken inside of each hive studied as opposed to the temperatures inside the Winter cluster. The data collected during these trials showed that a cavity in a living tree insulated with 13 inches of wood on both sides, 20 inches in the back and six inches in the front was extremely stable, maintaining a temperature right around freezing during outside temperature fluctuations that ranged between 16°F and 36°F (-9°C to 2°C). The cavity that performed closest to the living tree during the trials was the occupied insulated hive that saw temperatures that ranged from about 39°F to 45°F (4°C to 7°C) during the same 24-hour period. Meanwhile, the temperature range in the uninsulated hive fluctuated between approximately 22°F to 54°F (-5.5°C to 12°C). What I failed to account for when I postulated that the insulation value of a hollow tree would not be much different from a standard Langstroth hive was the thermal mass of the cavity.

Thermal mass refers to the ability of a material to absorb and store heat which provides inertia against temperature fluctuations. For example, as the outside temperature fluctuates throughout the day, the large thermal mass of the concrete floor and walls located within the insulated portion of a house helps to flatten out the daily temperature swings, since the thermal mass absorbs heat when the temperature inside is warm, and releases its stored heat when the temperature drops. While complementary, thermal mass is different from insulation that prevents heat from entering or escaping.

All materials have thermal mass; however, the more dense a material, the greater its thermal mass potential. As a result, concrete and earth have a high thermal mass while air has very little. While wood is considered to have a relatively low thermal mass, relatively dense hardwood will have a slightly greater thermal mass than softwood, and a living tree is going to have a much higher thermal mass than the lumber that makes up a hive due to the moisture content of the wood. It is estimated that water stores three to four times as many BTU’s per pound as rock or masonry. Additionally, the fact that a living tree pulls up relatively warm moisture from deep beneath the ground is likely to further augment the heat storage capacity of a tree compared to a colony living in a dead tree or a hive made of kiln-dried milled lumber.

Comparisons of temperatures inside a pair of occupied Langstroth hives over a 24-hour period on November 17, 2019. One hive (yellow line) was outfitted with a wool hive blanket (Beehive Cozy Cover) and the other hive (green line) was not.
Thanks to the American Bee Journal for the use of this image.

The data collected during the Radcliffe and Seeley study clearly shows that the hives we provide our bees can be made to perform fairly similarly to a colony’s natural home (a hollow living tree) if the hive walls “are built with, or wrapped in, good insulation.” While I was wrong about the difference between the temperatures within a cavity inside a hollow tree compared to a standard hive, I believe the final conclusions of the September Bee Culture article (To Insulate, or not to Insulate) still stand. The fact that thousands of cold climate beekeepers have successfully overwintered bees in standard Langstroth-style hives without the use of insulation of any kind, indicates that the need to insulate colonies during Winter is of secondary importance except perhaps in the most extreme locations.

It is of primary importance for Winter survival to ensure bees are healthy, have plenty of honey and pollen and stay dry. I would amend my original article by acknowledging that in cases where colony health or food stores are marginal, the Radcliffe and Seeley trials suggest that insulation may mean the difference between survival and death.

It is typically believed that colonies of honey bees use the least amount of honey to maintain themselves when temperatures are at or about 40°F (4.5°C). If the amount of honey available to a wintering colony is a little shy, the ability of insulation to keep the internal temperature closer to this temperature sweet spot could allow a colony to survive on honey stores that would otherwise be insufficient without insulation surrounding the hive.

The same is true for a colony that has mite or pathogen issues that have not been adequately addressed by the beekeeper. When colonies are stressed by pest and disease pressure, the increased rate of honey bee population decline can adversely affect that ability of the cluster to maintain adequate temperatures within the brood area. The bees simply don’t have enough bodies to keep themselves warm. If the cavity they are occupying is insulated, such as in the hollow of a living tree, or a well insulated hive, then the moderation of temperature extremes provided by the insulation value of the cavity along with its thermal mass could mean the difference between life and death.

Decisions on apiary management need to be considered in a holistic manner and each beekeeper’s unique situation is going to affect which management decisions are going to be highly beneficial and which are not worth the time and effort. A backyard beekeeper with a few hives and who may not have the knowledge, time or resources to ensure colonies are entirely healthy and well stocked for Winter are likely to benefit from the addition of hive insulation. Meanwhile, those with a couple dozen hives or more are unlikely to want to take on the additional cost, work and required storage space to purchase, install and then during the Summer, store insulation for all their hives. Simply ensuring that good nutrition is plentiful, the bees are healthy and colonies stay dry will result in the desired outcome.

The reality is that all beekeeping is hyper-local and should be holistically based upon each beekeepers management style, goals, hive type, the strain of honey bee being managed and the local climate. This is the reason I am always weary of “Best Management Practices” which attempt to place all beekeepers into a one-size-fits-all mold.

Ross Conrad is the author of Natural Beekeeping: Revised and Expanded 2nd Edition and The Land of Milk and Honey: A history of beekeeping in Vermont.

Work cited:
Robin W. Radcliffe and Thomas D. Seeley (2022) Thinking Outside the Box: Temperature dynamics in a tree cavity, wooden box, and Langstroth hives with or without insulation, American Bee Journal, Vol. 162, No. 8: pp 893-898

]]>
News Notes https://www.beeculture.com/news-notes/ Sat, 01 Oct 2022 12:00:35 +0000 https://www.beeculture.com/?p=42656 https://www.beeculture.com/wp-content/uploads/2022/09/Newsnotes.mp3
Click Here if you listened. We’re trying to gauge interest so only one question is required; however, there is a spot for feedback!

Read along below!

News Notes

By: Ross Conrad

Vermont first state to allow oxalic acid extended release mite treatment

A novel approach to control varroa mites is gaining attention around the U.S. that utilizes oxalic acid (OA) extended release (OAE). The first article on OAE appeared in the journal Apidologie (Maggi et al., 2015) and described a combination of OA and glycerin that showed effectiveness against Varroa for over 40 days after introduction to the hive. Randy Oliver of scientificbeekeeping.com has conducted additional trials on OAE but unfortunately this novel approach to varroa control has not yet been approved by the Environmental Protection Agency (EPA).

A new extended release oxalic acid treatment shows great promise in the effort to control varroa.

Generally, it is a violation of federal law to use a pesticide, or cause a pesticide to be used in ways that are inconsistent with its label. Exceptions to this regulation are found in the Federal statute that governs the registration, distribution, sale and use of pesticides known as the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA). Exemptions are found in FIFRA 2(ee) (1-4) which describe the four special circumstances in which it (a pesticide) is permissible for a pesticide to be used in a manner which is not specifically labeled.
In May of 2022, the state of Vermont became the first state in the U.S. to authorize a 2EE exemption for the use of a method for controlling varroa mites through the application of oxalic acid that is not allowed by the label, but is not specifically prohibited by the labeling. The state-wide label exemption to allow the use of oxalic acid sold under the brand name Api-bioxal using an extended release formulation for mite control is expected to assist Vermont’s beekeepers who have been struggling with the latest dramatic increase in annual colony losses that began around 2007.
So far, beekeepers who have experimented with OAE are reporting very good control of varroa and find the extended release oxalic acid formulation greatly decreases Winter colony losses, is gentler on the bees than many other treatments, is safer for beekeepers than many other treatments and eliminates concerns over contamination of honey or wax from the treatment’s active ingredients.
Unfortunately it may not be possible for all states to implement a 2EE exemption for OAE. Ideally, the registrant of Api-bioxal will amend their label language with the EPA to include this slow release method of applying oxalic acid so it would become available to beekeepers in all states.

EPA ignores own standards when evaluating cancer risks

On July 20, 2022 the EPA Office of Inspector General (OIG) issued a report that found the EPA failed to follow standard operating procedures and requirements in its pesticide cancer risk assessment process.

The U.S. Environmental Protection Agency has repeatedly failed to protect human and environmental health in their approval of toxic chemicals for use in agriculture.

The report comes on the heels of a U.S. Court of Appeals decision that overturned the EPA ruling that glyphosate, the active ingredient in Roundup, is safe for humans and wildlife. Not only did the court rule that the EPA’s “inconsistent reasoning” made its decision on cancer “arbitrary,” the court found the EPA violated the Endangered Species Act since the agency had previously admitted that “glyphosate ‘may affect’ all listed species experiencing glyphosate exposure—that’s 1,795 endangered or threatened species,” but ignored the Endangered Species Act in its decision.
Montsanto-Bayer’s glyphosate based pesticide is the most widely used pesticide in the world and numerous studies have found potential links to adverse honey bee impacts. (Balbuena et al., 2015; Faita et al., 2018; Herbert et al., 2014; Motta et al., 2018)
The failure of the EPA to adequately evaluate pesticides safety should cause those who still have confidence in the EPA to protect honey bees and other pollinators from non-target pesticide exposures and their impacts to rethink their misplaced confidence.

Environmentally: honey is better than sugar

Honey is largely considered the first sweetener used by mankind. It is the only sweetener we use that does not require processing for it to be usable. Today, there are numerous sweeteners that compete with honey for the consumers’ attention and dollars. Sucrose which is composed of 50 percent glucose and 50 percent fructose is the most common sugar. It is often called table sugar and is usually extracted from sugar cane and sugar beets.

Honey bees do the lion’s share of the work to produce honey, making the golden sweetener the number one choice for the environmentally conscious.

Sugar is also found everywhere. Not only is it found in foods as a main ingredient such as cakes, pies, ice cream, cookies and candy bars, but it is often added to foods that do not naturally contain sugar, such as luncheon meats, baby foods, soups, canned vegetables, cereals and most convenience foods like frozen TV dinners. Sugar is pervasive and its sweet taste is universally enjoyed. Unfortunately, sugar production is also quite harmful to the environment. A July article titled Sugar Taxation for Climate and Sustainability Goals (King & van den Bergh 2022) suggests that reducing sugar consumption could help fight climate change, reduce environmental damage from sugar mill pollutants and help prevent the loss of biodiversity.
The sugar mills that process sugar cane consume large amounts of energy and the majority of the time that energy is produced by fossil fuels. Honey on the other hand is produced be bees whose energy requirements are fueled by the nectar of flower blossoms. Any fossil fuels used to produce and process honey is limited to the occasional trips the beekeeper makes to check on the bees during the season, the energy used to extract the honey and the embodied energy that goes into making the hive equipment used to house the bees. As a result, not only is local honey the least environmentally harmful sweetener, but it has one of the smallest carbon footprints of all foods.
In addition, the wastewater runoff from sugar cane fields, sludge washed from mills and plant matter waste produced as a result of sugar production choke bodies of fresh water, absorbing available oxygen and lead to massive fish die offs. In contrast, the only waste produced during honey production is beeswax which can be rendered, cleaned and is a valuable resource used to produce additional products.
Meanwhile, plant and animal habitat is destroyed when fields are created to facilitate sugarcane cultivation which significantly increases biodiversity loss. As honey bees go about collecting nectar to produce honey, the impact that pollination produces helps to maintain biodiversity. The authors of the Nature Sustainability study hint that taxing sugar would be a good way to reduce its consumption but do not suggest how people might replace this ubiquitous sweetener. We beekeepers have the answer: everyone who uses sweeteners should substitute honey for sugar whenever possible.

References:

Balbuena, M.S, Tison, L, Hahn. M.L, Greggers, U, Menzel, R, Farina. W.M., Effects of Sublethal doses of glyphosate on honey bee navigation, Journal of Experimental Biology (2015) 218: 2799-2805; doi: 10.1242/jeb.117291
EPA Office of Inspector General (2022) Hotline Report: Ensuring the safety of chemicals, The EPA needs to improve the transparency of its cancer-assessment process for pesticides, Report No. 22-E-0053
Faita, M. R., Oliveira, E. M., Alves Junior, V. V., Orth, A. I., Nodari, R. O. (2018) Changes in hypopharyngeal glands of nurse bees (Apis mellifera) induced by pollen-containing sublethal doses of the herbicide Roundup, Chemosphere, Vol 211 pp. 566-572
Herbert, L.T, Vázquez, D.E., Arenas, A., Farina, W.M, Effects of field-realistic doses of glyphosate on honeybee appetitive behaviour, Journal of Experimental Biology (2014) 217: 3457-3464; doi: 10.1242/jeb.109520
King, Louis, C. & Jeroen van den Bergh (2022) Sugar taxation for climate and sustainability goals, Nature Sustainability
Maggi, M., Tourn, E., Negri, P., Szawarski, N., Marconi, A., Gallez, L., Medici, S., Ruffinengo, S., Brasesco, C., DeFuedis, L., Quintana, S., Sammataro, D., Eguaras, M. (2015) A new formulation of oxalic acid for Varroa destructor control applied in Apis mellifera colonies in the presence of brood, Apidologie 47
Motta, E.V.S., Raymann, K., Moran, N.A. (2018) Glyphosate perturbs the gut microbiota of honey bees, Applied Biological Sciences, 115(42): 10305-10310
US Court of Appeals for the Ninth Circuit (2022) Case No. 20-70787 https://www.centerforfoodsafety.org/files/ca9_glyphosate-decision_82995.pdf

]]>